From 404aeae4545d2426c089a5f8d5e82dae56f5212b Mon Sep 17 00:00:00 2001 From: Rutger Broekhoff Date: Fri, 29 Dec 2023 21:31:53 +0100 Subject: Make Nix builds work --- vendor/golang.org/x/crypto/argon2/argon2.go | 283 ++++++++++++++++++++++++++++ 1 file changed, 283 insertions(+) create mode 100644 vendor/golang.org/x/crypto/argon2/argon2.go (limited to 'vendor/golang.org/x/crypto/argon2/argon2.go') diff --git a/vendor/golang.org/x/crypto/argon2/argon2.go b/vendor/golang.org/x/crypto/argon2/argon2.go new file mode 100644 index 0000000..29f0a2d --- /dev/null +++ b/vendor/golang.org/x/crypto/argon2/argon2.go @@ -0,0 +1,283 @@ +// Copyright 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package argon2 implements the key derivation function Argon2. +// Argon2 was selected as the winner of the Password Hashing Competition and can +// be used to derive cryptographic keys from passwords. +// +// For a detailed specification of Argon2 see [1]. +// +// If you aren't sure which function you need, use Argon2id (IDKey) and +// the parameter recommendations for your scenario. +// +// # Argon2i +// +// Argon2i (implemented by Key) is the side-channel resistant version of Argon2. +// It uses data-independent memory access, which is preferred for password +// hashing and password-based key derivation. Argon2i requires more passes over +// memory than Argon2id to protect from trade-off attacks. The recommended +// parameters (taken from [2]) for non-interactive operations are time=3 and to +// use the maximum available memory. +// +// # Argon2id +// +// Argon2id (implemented by IDKey) is a hybrid version of Argon2 combining +// Argon2i and Argon2d. It uses data-independent memory access for the first +// half of the first iteration over the memory and data-dependent memory access +// for the rest. Argon2id is side-channel resistant and provides better brute- +// force cost savings due to time-memory tradeoffs than Argon2i. The recommended +// parameters for non-interactive operations (taken from [2]) are time=1 and to +// use the maximum available memory. +// +// [1] https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf +// [2] https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03#section-9.3 +package argon2 + +import ( + "encoding/binary" + "sync" + + "golang.org/x/crypto/blake2b" +) + +// The Argon2 version implemented by this package. +const Version = 0x13 + +const ( + argon2d = iota + argon2i + argon2id +) + +// Key derives a key from the password, salt, and cost parameters using Argon2i +// returning a byte slice of length keyLen that can be used as cryptographic +// key. The CPU cost and parallelism degree must be greater than zero. +// +// For example, you can get a derived key for e.g. AES-256 (which needs a +// 32-byte key) by doing: +// +// key := argon2.Key([]byte("some password"), salt, 3, 32*1024, 4, 32) +// +// The draft RFC recommends[2] time=3, and memory=32*1024 is a sensible number. +// If using that amount of memory (32 MB) is not possible in some contexts then +// the time parameter can be increased to compensate. +// +// The time parameter specifies the number of passes over the memory and the +// memory parameter specifies the size of the memory in KiB. For example +// memory=32*1024 sets the memory cost to ~32 MB. The number of threads can be +// adjusted to the number of available CPUs. The cost parameters should be +// increased as memory latency and CPU parallelism increases. Remember to get a +// good random salt. +func Key(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte { + return deriveKey(argon2i, password, salt, nil, nil, time, memory, threads, keyLen) +} + +// IDKey derives a key from the password, salt, and cost parameters using +// Argon2id returning a byte slice of length keyLen that can be used as +// cryptographic key. The CPU cost and parallelism degree must be greater than +// zero. +// +// For example, you can get a derived key for e.g. AES-256 (which needs a +// 32-byte key) by doing: +// +// key := argon2.IDKey([]byte("some password"), salt, 1, 64*1024, 4, 32) +// +// The draft RFC recommends[2] time=1, and memory=64*1024 is a sensible number. +// If using that amount of memory (64 MB) is not possible in some contexts then +// the time parameter can be increased to compensate. +// +// The time parameter specifies the number of passes over the memory and the +// memory parameter specifies the size of the memory in KiB. For example +// memory=64*1024 sets the memory cost to ~64 MB. The number of threads can be +// adjusted to the numbers of available CPUs. The cost parameters should be +// increased as memory latency and CPU parallelism increases. Remember to get a +// good random salt. +func IDKey(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte { + return deriveKey(argon2id, password, salt, nil, nil, time, memory, threads, keyLen) +} + +func deriveKey(mode int, password, salt, secret, data []byte, time, memory uint32, threads uint8, keyLen uint32) []byte { + if time < 1 { + panic("argon2: number of rounds too small") + } + if threads < 1 { + panic("argon2: parallelism degree too low") + } + h0 := initHash(password, salt, secret, data, time, memory, uint32(threads), keyLen, mode) + + memory = memory / (syncPoints * uint32(threads)) * (syncPoints * uint32(threads)) + if memory < 2*syncPoints*uint32(threads) { + memory = 2 * syncPoints * uint32(threads) + } + B := initBlocks(&h0, memory, uint32(threads)) + processBlocks(B, time, memory, uint32(threads), mode) + return extractKey(B, memory, uint32(threads), keyLen) +} + +const ( + blockLength = 128 + syncPoints = 4 +) + +type block [blockLength]uint64 + +func initHash(password, salt, key, data []byte, time, memory, threads, keyLen uint32, mode int) [blake2b.Size + 8]byte { + var ( + h0 [blake2b.Size + 8]byte + params [24]byte + tmp [4]byte + ) + + b2, _ := blake2b.New512(nil) + binary.LittleEndian.PutUint32(params[0:4], threads) + binary.LittleEndian.PutUint32(params[4:8], keyLen) + binary.LittleEndian.PutUint32(params[8:12], memory) + binary.LittleEndian.PutUint32(params[12:16], time) + binary.LittleEndian.PutUint32(params[16:20], uint32(Version)) + binary.LittleEndian.PutUint32(params[20:24], uint32(mode)) + b2.Write(params[:]) + binary.LittleEndian.PutUint32(tmp[:], uint32(len(password))) + b2.Write(tmp[:]) + b2.Write(password) + binary.LittleEndian.PutUint32(tmp[:], uint32(len(salt))) + b2.Write(tmp[:]) + b2.Write(salt) + binary.LittleEndian.PutUint32(tmp[:], uint32(len(key))) + b2.Write(tmp[:]) + b2.Write(key) + binary.LittleEndian.PutUint32(tmp[:], uint32(len(data))) + b2.Write(tmp[:]) + b2.Write(data) + b2.Sum(h0[:0]) + return h0 +} + +func initBlocks(h0 *[blake2b.Size + 8]byte, memory, threads uint32) []block { + var block0 [1024]byte + B := make([]block, memory) + for lane := uint32(0); lane < threads; lane++ { + j := lane * (memory / threads) + binary.LittleEndian.PutUint32(h0[blake2b.Size+4:], lane) + + binary.LittleEndian.PutUint32(h0[blake2b.Size:], 0) + blake2bHash(block0[:], h0[:]) + for i := range B[j+0] { + B[j+0][i] = binary.LittleEndian.Uint64(block0[i*8:]) + } + + binary.LittleEndian.PutUint32(h0[blake2b.Size:], 1) + blake2bHash(block0[:], h0[:]) + for i := range B[j+1] { + B[j+1][i] = binary.LittleEndian.Uint64(block0[i*8:]) + } + } + return B +} + +func processBlocks(B []block, time, memory, threads uint32, mode int) { + lanes := memory / threads + segments := lanes / syncPoints + + processSegment := func(n, slice, lane uint32, wg *sync.WaitGroup) { + var addresses, in, zero block + if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) { + in[0] = uint64(n) + in[1] = uint64(lane) + in[2] = uint64(slice) + in[3] = uint64(memory) + in[4] = uint64(time) + in[5] = uint64(mode) + } + + index := uint32(0) + if n == 0 && slice == 0 { + index = 2 // we have already generated the first two blocks + if mode == argon2i || mode == argon2id { + in[6]++ + processBlock(&addresses, &in, &zero) + processBlock(&addresses, &addresses, &zero) + } + } + + offset := lane*lanes + slice*segments + index + var random uint64 + for index < segments { + prev := offset - 1 + if index == 0 && slice == 0 { + prev += lanes // last block in lane + } + if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) { + if index%blockLength == 0 { + in[6]++ + processBlock(&addresses, &in, &zero) + processBlock(&addresses, &addresses, &zero) + } + random = addresses[index%blockLength] + } else { + random = B[prev][0] + } + newOffset := indexAlpha(random, lanes, segments, threads, n, slice, lane, index) + processBlockXOR(&B[offset], &B[prev], &B[newOffset]) + index, offset = index+1, offset+1 + } + wg.Done() + } + + for n := uint32(0); n < time; n++ { + for slice := uint32(0); slice < syncPoints; slice++ { + var wg sync.WaitGroup + for lane := uint32(0); lane < threads; lane++ { + wg.Add(1) + go processSegment(n, slice, lane, &wg) + } + wg.Wait() + } + } + +} + +func extractKey(B []block, memory, threads, keyLen uint32) []byte { + lanes := memory / threads + for lane := uint32(0); lane < threads-1; lane++ { + for i, v := range B[(lane*lanes)+lanes-1] { + B[memory-1][i] ^= v + } + } + + var block [1024]byte + for i, v := range B[memory-1] { + binary.LittleEndian.PutUint64(block[i*8:], v) + } + key := make([]byte, keyLen) + blake2bHash(key, block[:]) + return key +} + +func indexAlpha(rand uint64, lanes, segments, threads, n, slice, lane, index uint32) uint32 { + refLane := uint32(rand>>32) % threads + if n == 0 && slice == 0 { + refLane = lane + } + m, s := 3*segments, ((slice+1)%syncPoints)*segments + if lane == refLane { + m += index + } + if n == 0 { + m, s = slice*segments, 0 + if slice == 0 || lane == refLane { + m += index + } + } + if index == 0 || lane == refLane { + m-- + } + return phi(rand, uint64(m), uint64(s), refLane, lanes) +} + +func phi(rand, m, s uint64, lane, lanes uint32) uint32 { + p := rand & 0xFFFFFFFF + p = (p * p) >> 32 + p = (p * m) >> 32 + return lane*lanes + uint32((s+m-(p+1))%uint64(lanes)) +} -- cgit v1.2.3