1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
open Prelude
type tx_type =
| Interest_tx
| Online_banking_tx
| Recurrent_direct_tx
| Payment_terminal_tx
| Cash_payment_tx
| Atm_tx
| Auto_save_rounding_tx
| Batch_tx
| Direct_debit_tx
| Periodic_tx
type iban_tag = Account_tag | Counterparty_iban_tag [@@deriving compare, sexp]
type unit_tag = Filed_tag | Google_pay_tag | Auto_round_savings_tag
[@@deriving compare, sexp]
type string_tag =
| Desc_tag
| User_tag
| Counterparty_name_tag
| Reference_tag
| Mandate_id_tag
| Creditor_id_tag
| Other_party_tag
| Transaction_tag
| Terminal_tag
| Card_seq_no_tag
| Savings_account_tag
[@@deriving compare, sexp]
module Label = struct
type 'a t =
| Iban_label : iban_tag -> Iban.t t
| String_label : string_tag -> string t
| Timestamp_label : Time_ns.t t
| Unit_label : unit_tag -> unit t
let int_to_cmp x : ('a, 'a) Dmap.cmp =
if x < 0 then Lt else if x > 0 then Gt else Eq
let compare (type a1 a2) (v1 : a1 t) (v2 : a2 t) : (a1, a2) Dmap.cmp =
match (v1, v2) with
| Iban_label t1, Iban_label t2 -> int_to_cmp @@ [%compare: iban_tag] t1 t2
| String_label t1, String_label t2 ->
int_to_cmp @@ [%compare: string_tag] t1 t2
| Timestamp_label, Timestamp_label -> Eq
| Unit_label t1, Unit_label t2 -> int_to_cmp @@ [%compare: unit_tag] t1 t2
| Iban_label _, _ -> Lt
| String_label _, Iban_label _ -> Gt
| String_label _, _ -> Lt
| Timestamp_label, Unit_label _ -> Lt
| Timestamp_label, _ -> Gt
| Unit_label _, _ -> Gt
end
module Labels = struct
include Dmap.Make (Label)
let sexp_of_binding = function
| Binding (Iban_label tag, iban) ->
Sexp.List
[
Sexp.Atom "iban"; [%sexp_of: iban_tag] tag; [%sexp_of: Iban.t] iban;
]
| Binding (String_label tag, s) ->
Sexp.List
[ Sexp.Atom "string"; [%sexp_of: string_tag] tag; Sexp.Atom s ]
| Binding (Timestamp_label, ts) ->
Sexp.List [ Sexp.Atom "timestamp"; [%sexp_of: Time_ns_unix.t] ts ]
| Binding (Unit_label tag, ()) ->
Sexp.List [ Sexp.Atom "unit"; [%sexp_of: unit_tag] tag ]
let binding_of_sexp sexp =
match sexp with
| Sexp.List [ Sexp.Atom "iban"; tag_sexp; iban_sexp ] ->
Binding
( Iban_label ([%of_sexp: iban_tag] tag_sexp),
[%of_sexp: Iban.t] iban_sexp )
| Sexp.List [ Sexp.Atom "string"; tag_sexp; Sexp.Atom s ] ->
Binding (String_label ([%of_sexp: string_tag] tag_sexp), s)
| Sexp.List [ Sexp.Atom "timestamp"; ts_sexp ] ->
Binding (Timestamp_label, [%of_sexp: Time_ns_unix.t] ts_sexp)
| Sexp.List [ Sexp.Atom "unit"; tag_sexp ] ->
Binding (Unit_label ([%of_sexp: unit_tag] tag_sexp), ())
| _ -> of_sexp_error "Labels.binding_of_sexp: invalid binding" sexp
let sexp_of_t m = Sexp.List (bindings m |> List.map ~f:sexp_of_binding)
let t_of_sexp sexp =
match sexp with
| Sexp.List labels ->
Sequence.(of_list labels >>| binding_of_sexp |> to_seq) |> of_seq
| Sexp.Atom _ -> of_sexp_error "Labels.t_of_sexp: list needed" sexp
end
module Debit_credit = struct
type t = Debit | Credit [@@deriving string, sexp_of]
(* let opposite = function Debit -> Credit | Credit -> Debit *)
end
module Money = struct
module Amount : sig
type t
val equal : t -> t -> bool
val compare : t -> t -> int
val of_bigint : Bigint.t -> t option
val to_bigint : t -> Bigint.t
val ( + ) : t -> t -> t
val ( = ) : t -> t -> bool
val sexp_of_t : t -> Sexp.t
val zero : t
end = struct
type t = Bigint.t [@@deriving sexp_of]
let equal = Bigint.equal
let compare = Bigint.compare
let of_bigint x = if Bigint.(zero <= x) then Some x else None
let to_bigint x = x
let ( + ) x y = Bigint.(x + y)
let ( = ) = equal
let zero = Bigint.zero
end
module Diff : sig
type t
val equal : t -> t -> bool
val compare : t -> t -> int
val of_bigint : Bigint.t -> t
val to_bigint : t -> Bigint.t
val ( + ) : t -> t -> t
val ( +% ) : t -> Amount.t -> t
val ( - ) : t -> t -> t
val ( -% ) : t -> Amount.t -> t
val ( = ) : t -> t -> bool
val neg : t -> t
val ( ~$ ) : int -> t
val sexp_of_t : t -> Sexp.t
val of_amount :
Amount.t -> Debit_credit.t -> on_debit:[ `Incr | `Decr ] -> t
end = struct
type t = Bigint.t [@@deriving sexp_of]
let equal = Bigint.equal
let compare = Bigint.compare
let of_bigint x = x
let to_bigint x = x
let ( + ) x y = Bigint.(x + y)
let ( +% ) x y = x + of_bigint (Amount.to_bigint y)
let ( - ) x y = Bigint.(x - y)
let ( -% ) x y = x - of_bigint (Amount.to_bigint y)
let ( = ) = equal
let neg = Bigint.neg
let ( ~$ ) = Fn.compose of_bigint Bigint.of_int
let of_amount x (dc : Debit_credit.t) ~on_debit =
match (dc, on_debit) with
| Debit, `Incr -> of_bigint (Amount.to_bigint x)
| Credit, `Incr -> neg (of_bigint (Amount.to_bigint x))
| Debit, `Decr -> neg (of_bigint (Amount.to_bigint x))
| Credit, `Decr -> of_bigint (Amount.to_bigint x)
end
end
module Commodity_id = struct
type t = string [@@deriving equal, compare, sexp]
module Map = Map.Make (struct
type nonrec t = t [@@deriving equal, compare, sexp]
end)
end
(*
type scalar =
| Amount of Money.Amount.t
| Rate of { in_primary_commodity : Money.Amount.t; rate : Bigdecimal.t }
[@@deriving equal, compare, sexp_of] *)
module Account_structure = struct
module Categories = struct
(* The five top-level categories *)
type asset [@@deriving sexp_of]
type equity [@@deriving sexp_of]
type expense [@@deriving sexp_of]
type income [@@deriving sexp_of]
type liability [@@deriving sexp_of]
(* Subcategories of assets *)
type bank [@@deriving sexp_of]
(* No subcategories *)
type final [@@deriving sexp_of]
end
module type S = sig
type 'a t [@@deriving sexp_of]
type 'a f =
| Accounts_payable : Categories.final f t -> Categories.liability f
| Accounts_receivable : Categories.final f t -> Categories.asset f
| Bank : Categories.bank f t -> Categories.asset f
| Cash : Categories.final f t -> Categories.asset f
| Credit : Categories.final f t -> Categories.liability f
| Mutual_fund : Categories.final f t -> Categories.asset f
| Stock : Categories.final f t -> Categories.asset f
| Savings : Categories.final f t -> Categories.bank f
| Checking : Categories.final f t -> Categories.bank f
[@@deriving sexp_of]
type t0 =
| Asset of Categories.asset f t
| Equity of Categories.equity f t
| Expense of Categories.expense f t
| Income of Categories.income f t
| Liability of Categories.liability f t
[@@deriving sexp_of]
end
module Make (F : sig
type 'a t [@@deriving sexp_of]
end) : S with type 'a t = 'a F.t = struct
include F
type 'a f =
| Accounts_payable : Categories.final f F.t -> Categories.liability f
| Accounts_receivable : Categories.final f F.t -> Categories.asset f
| Bank : Categories.bank f F.t -> Categories.asset f
| Cash : Categories.final f F.t -> Categories.asset f
| Credit : Categories.final f F.t -> Categories.liability f
| Mutual_fund : Categories.final f F.t -> Categories.asset f
| Stock : Categories.final f F.t -> Categories.asset f
| Savings : Categories.final f F.t -> Categories.bank f
| Checking : Categories.final f F.t -> Categories.bank f
[@@deriving sexp_of]
type t0 =
| Asset of Categories.asset f F.t
| Equity of Categories.equity f F.t
| Expense of Categories.expense f F.t
| Income of Categories.income f F.t
| Liability of Categories.liability f F.t
[@@deriving sexp_of]
end
module Gen_f_cons = struct
module Accounts_payable = struct
type outer = Categories.liability
type inner = Categories.final
module Specialize (G : S) = struct
let cons v = G.Accounts_payable v
end
end
module type S = sig
type inner
type outer
module Specialize : functor (G : S) -> sig
val cons : inner G.f G.t -> outer G.f
end
end
end
module Visitor
(G : S)
(Acc : sig
type 'a t
end) =
struct
type nonrec 'outer t = {
car :
'inner.
'inner G.f G.t ->
(module Gen_f_cons.S with type inner = 'inner and type outer = 'outer) ->
'outer Acc.t;
}
let visit (type a) (f : a t) : a G.f -> a Acc.t = function
| G.Accounts_payable v -> f.car v (module Gen_f_cons.Accounts_payable)
| _ -> failwith "kaas"
(*
| Accounts_receivable v ->
f.car v (fun inner -> H.Accounts_receivable inner)
| Bank v -> f.car v (fun inner -> H.Bank inner)
| Cash v -> f.car v (fun inner -> H.Cash inner)
| Credit v -> f.car v (fun inner -> H.Credit inner)
| Mutual_fund v -> f.car v (fun inner -> H.Mutual_fund inner)
| Stock v -> f.car v (fun inner -> H.Stock inner)
| Savings v -> f.car v (fun inner -> H.Savings inner)
| Checking v -> f.car v (fun inner -> H.Checking inner) *)
end
module Basic_visitor (G : S) = struct
type nonrec 'b t = { car : 'a. 'a G.f G.t -> 'b }
let visit (type b c) (f : c t) : b G.f -> c =
let module Inst =
Visitor
(G)
(struct
type 'a t = c
end)
in
Inst.visit { car = (fun v _cons -> f.car v) }
end
end
module Account_type = struct
type 'a elem = Leaf | Node of 'a [@@deriving sexp_of]
include Account_structure.Make (struct
type 'a t = 'a elem [@@deriving sexp_of]
end)
end
module Typed_account_path = struct
type 'a elem = Leaf | Node of string * 'a | Ind of string * 'a elem
[@@deriving sexp_of]
include Account_structure.Make (struct
type 'a t = 'a elem [@@deriving sexp_of]
end)
end
module Account_path = struct
type t = string list [@@deriving compare, sexp]
module Map = Map.Make (struct
type nonrec t = t [@@deriving compare, sexp]
end)
end
module Account_hierarchy = struct
(* The contents of an account of category 'a *)
type 'a core =
(* Comprises of subaccounts of its subcategories *)
| Node of 'a String.Map.t
(* Comprises of subaccounts of its own category *)
| Ind of 'a account String.Map.t
(* Has no subaccounts, has a balance in a certain commodity *)
| Leaf of Commodity_id.t * Money.Diff.t
[@@deriving sexp_of]
and extra = { description : String.t } [@@deriving sexp_of]
and 'a account = extra * 'a core
module Structure = Account_structure.Make (struct
type 'a t = 'a account [@@deriving sexp_of]
end)
(* All accounts *)
type world = Structure.t0 String.Map.t
module Mapper = struct
type nonrec 'b t = {
car :
'a.
'a Structure.f account ->
('a Account_type.f Account_type.elem -> Account_type.t0) ->
('b * 'a Structure.f account) option;
}
let map (type b c) (f : c t) (mkt : b Account_type.f -> Account_type.t0) :
b Structure.f -> (c * b Structure.f) option =
let module Inst =
Account_structure.Visitor
(Structure)
(struct
type 'b t = (c * 'b Structure.f) option
end)
in
Inst.visit
{
car =
(fun (type inner)
v
(module Gen_cons : Account_structure.Gen_f_cons.S
with type inner = inner
and type outer = b)
->
let open Option.Let_syntax in
let module Type_cons = Gen_cons.Specialize (Account_type) in
let module Own_cons = Gen_cons.Specialize (Structure) in
let%map c, v' = f.car v (fun el -> mkt (Type_cons.cons el)) in
(c, Own_cons.cons v'));
}
end
let rec unsafe_alter_aux (subaid : Account_path.t)
(f :
Account_type.t0 ->
extra ->
Commodity_id.t ->
Money.Diff.t ->
'a * extra * Money.Diff.t) : 'a Mapper.t =
{
car =
(fun in_acc mkt ->
let open Option.Let_syntax in
match (subaid, in_acc) with
| [], (extra, Leaf (acc_comm, acc_bal)) ->
let x, extra', acc_bal' =
f (mkt Account_type.Leaf) extra acc_comm acc_bal
in
Some (x, (extra', Leaf (acc_comm, acc_bal')))
| [], _ -> None
| subaid0 :: subaid, (extra, Node subaccs) ->
let%bind subacc = Map.find subaccs subaid0 in
let%map x, subacc' =
Mapper.map
(unsafe_alter_aux subaid f)
(fun k -> mkt (Node k))
subacc
in
(x, (extra, Node (Map.set subaccs ~key:subaid0 ~data:subacc')))
| subaid0 :: subaid, (extra, Ind subaccs) ->
let%bind subacc = Map.find subaccs subaid0 in
let%map x, subacc' = (unsafe_alter_aux subaid f).car subacc mkt in
(x, (extra, Ind (Map.set subaccs ~key:subaid0 ~data:subacc')))
| _ :: _, (_, Leaf _) -> None);
}
let unsafe_alter (aid : Account_path.t)
(f :
Account_type.t0 ->
extra ->
Commodity_id.t ->
Money.Diff.t ->
'a * extra * Money.Diff.t) (w : world) : ('a * world) option =
match aid with
| [] -> None
| aid0 :: subaid -> (
let open Option.Let_syntax in
match%bind Map.find w aid0 with
| Asset acc ->
let%map x, acc' =
(unsafe_alter_aux subaid f).car acc (fun k -> Asset k)
in
(x, Map.set w ~key:aid0 ~data:(Asset acc'))
| Expense acc ->
let%map x, acc' =
(unsafe_alter_aux subaid f).car acc (fun k -> Expense k)
in
(x, Map.set w ~key:aid0 ~data:(Expense acc'))
| Income acc ->
let%map x, acc' =
(unsafe_alter_aux subaid f).car acc (fun k -> Income k)
in
(x, Map.set w ~key:aid0 ~data:(Income acc'))
| Liability acc ->
let%map x, acc' =
(unsafe_alter_aux subaid f).car acc (fun k -> Liability k)
in
(x, Map.set w ~key:aid0 ~data:(Liability acc'))
| Equity acc ->
let%map x, acc' =
(unsafe_alter_aux subaid f).car acc (fun k -> Equity k)
in
(x, Map.set w ~key:aid0 ~data:(Equity acc')))
(** Update the balance (debit/credit ([dc])) of account [aid] [by_amount]
(commodity: [in_comm]) in [world], giving the updated world and the pre
and post balances for [aid] iff the account exists in [world]. *)
let update_bal aid dc by_amount in_comm (w : world) :
(Money.Diff.t * Money.Diff.t * world) option =
let open Option.Let_syntax in
let%bind mres, w' =
unsafe_alter aid
(fun acc_type acc_extra acc_comm acc_bal ->
if not ([%equal: Commodity_id.t] acc_comm in_comm) then
(None, acc_extra, acc_bal)
else
let on_debit =
match acc_type with
| Asset _ -> `Incr
| Expense _ -> `Incr
| Income _ -> `Decr
| Liability _ -> `Decr
| Equity _ -> `Decr
in
let acc_bal' =
Money.Diff.(acc_bal + of_amount by_amount dc ~on_debit)
in
(Some (acc_bal, acc_bal'), acc_extra, acc_bal'))
w
in
let%map pre_bal, post_bal = mres in
(pre_bal, post_bal, w')
let get_bal aid (w : world) : (Commodity_id.t * Money.Diff.t) option =
let open Option.Let_syntax in
let%map cb, _world' =
unsafe_alter aid
(fun _acc_type acc_extra acc_comm acc_bal ->
((acc_comm, acc_bal), acc_extra, acc_bal))
w
in
cb
let add_balance_maps m1 m2 : Money.Diff.t Commodity_id.Map.t =
Map.merge m1 m2 ~f:(fun ~key:_comm -> function
| `Both (b1, b2) -> Some Money.Diff.(b1 + b2)
| `Left b | `Right b -> Some b)
let rec collect_balances : type a.
a Structure.f account -> Money.Diff.t Commodity_id.Map.t = function
| _extra, Leaf (acc_comm, acc_bal) ->
Commodity_id.Map.singleton acc_comm acc_bal
| _extra, Ind subaccs ->
Map.fold subaccs ~init:Commodity_id.Map.empty
~f:(fun ~key:_ ~data:subacc comm_bal_sums ->
add_balance_maps comm_bal_sums (collect_balances subacc))
| _extra, Node subaccs ->
Map.fold subaccs ~init:Commodity_id.Map.empty
~f:(fun ~key:_ ~data:subacc comm_bal_sums ->
let module Visitor = Account_structure.Basic_visitor (Structure) in
add_balance_maps comm_bal_sums
(Visitor.visit { car = collect_balances } subacc))
type delete_error = Not_found | Nonzero_balance
(*
let rec delete_aux : type a. (Account_path.t * a f account) -> (a f account, delete_error) result = function
| [], (extra, Leaf (_acc_comm, acc_bal)) ->
if Money.Diff.(acc_bal = ~$0) then
let delete (aid : Account_path.t) (w : world) =
*)
let world_inst : world =
String.Map.of_alist_exn
[
( "Assets",
Structure.Asset
( { description = "assets" },
Ind
(String.Map.of_alist_exn
[
( "Current",
( { description = "current" },
Node
(String.Map.of_alist_exn
[
( "Checking",
Structure.Bank
( { description = "bnak accounts" },
Ind
(String.Map.of_alist_exn
[
( "ING",
( { description = "ING bank" },
Leaf ("EUC", Money.Diff.(~$0))
) );
( "N26",
( { description = "ING bank" },
Leaf ("EUC", Money.Diff.(~$0))
) );
]) ) );
]) ) );
]) ) );
]
end
module Bal_assert = struct
type t = { account : Account_path.t; labels : Labels.t; bal : Money.Diff.t }
[@@deriving sexp_of]
end
module Account_decl = struct
type t = {
type_ : Account_type.t0;
parent : Account_path.t;
name : string;
commodity : Commodity_id.t;
extra : Account_hierarchy.extra;
}
[@@deriving sexp_of]
end
module Tx : sig
type entry = {
dc : Debit_credit.t;
commodity : Commodity_id.t;
amount : Money.Amount.t;
assertion : Money.Diff.t option;
}
(* Private because we only want to allow constructing balanced transactions. *)
type t = private {
cleared : Date.t option;
entries : entry Account_path.Map.t;
labels : Labels.t;
}
type error = Unbalanced
val make :
cleared:Date.t option ->
entries:entry Account_path.Map.t ->
labels:Labels.t ->
(t, error) result
val sexp_of_t : t -> Sexp.t
end = struct
type entry = {
dc : Debit_credit.t;
commodity : Commodity_id.t;
amount : Money.Amount.t;
assertion : Money.Diff.t option;
}
[@@deriving sexp_of]
type t = {
cleared : Date.t option;
entries : entry Account_path.Map.t;
labels : Labels.t;
}
[@@deriving sexp_of]
type error = Unbalanced
let is_balanced entries =
Map.fold entries ~init:Commodity_id.Map.empty
~f:(fun ~key:_ ~data comm_balances ->
Map.update comm_balances data.commodity ~f:(fun ocomm_bal ->
let comm_bal = Option.value ocomm_bal ~default:Money.Diff.(~$0) in
match data.dc with
| Debit_credit.Debit -> Money.Diff.(comm_bal +% data.amount)
| Debit_credit.Credit -> Money.Diff.(comm_bal -% data.amount)))
|> Map.for_all ~f:(fun comm_bal -> Money.Diff.(comm_bal = ~$0))
let make ~cleared ~entries ~labels =
if not (is_balanced entries) then Error Unbalanced
else Ok { cleared; entries; labels }
end
type item =
| Tx_item of Tx.t
| Bal_assert_item of Bal_assert.t
| Account_decl_item of Account_decl.t
[@@deriving sexp_of]
type t = item list [@@deriving sexp_of]
module World = struct
type t = Account_hierarchy.world
let empty : t = String.Map.empty
let apply_tx (tx : Tx.t) world : t option =
Map.fold_option tx.entries ~init:world
~f:(fun ~key:aid ~(data : Tx.entry) world ->
let open Option.Let_syntax in
let%bind _old_bal, new_bal, world =
Account_hierarchy.update_bal aid data.dc data.amount data.commodity
world
in
match data.assertion with
| None -> Some world
| Some bal_ass ->
if Money.Diff.(bal_ass = new_bal) then Some world else None)
let apply_ba (ba : Bal_assert.t) world : t option =
let open Option.Let_syntax in
let%bind _comm, bal = Account_hierarchy.get_bal ba.account world in
if not Money.Diff.(bal = ba.bal) then None else Some world
let apply_ad (_ad : Account_decl.t) _world : t option = None
let apply : item -> t -> t option = function
| Tx_item tx -> apply_tx tx
| Bal_assert_item ba -> apply_ba ba
| Account_decl_item ad -> apply_ad ad
end
module Ctxd_item = struct end
let make = Fn.id
|