From mininix Require Export lambda.interp. From stdpp Require Import options. Module Import lambda. Export lambda. Lemma interp_S n : interp (S n) = interp1 (interp n). Proof. done. Qed. Fixpoint thunk_size (t : thunk) : nat := S (map_sum_with thunk_size (thunk_env t)). Definition env_size (E : env) : nat := map_sum_with thunk_size E. Lemma env_ind (P : env → Prop) : (∀ E, map_Forall (λ i, P ∘ thunk_env) E → P E) → ∀ E : env, P E. Proof. intros Pbs E. induction (Nat.lt_wf_0_projected env_size E) as [E _ IH]. apply Pbs, map_Forall_lookup=> y [E' e'] Hy. apply (map_sum_with_lookup_le thunk_size) in Hy. apply IH. by rewrite -Nat.le_succ_l. Qed. (** Correspondence to operational semantics *) Definition subst_env' (thunk_to_expr : thunk → expr) (E : env) : expr → expr := subst (thunk_to_expr <$> E). Fixpoint thunk_to_expr (t : thunk) : expr := subst_env' thunk_to_expr (thunk_env t) (thunk_expr t). Notation subst_env := (subst_env' thunk_to_expr). Lemma subst_env_eq e E : subst_env E e = match e with | EString s => EString s | EId x => if E !! x is Some t then thunk_to_expr t else EId x | EAbs x e => EAbs x (subst_env (delete x E) e) | EApp e1 e2 => EApp (subst_env E e1) (subst_env E e2) end. Proof. rewrite /subst_env. destruct e; simpl; try done. - rewrite lookup_fmap. by destruct (E !! x) as [[]|]. - by rewrite fmap_delete. Qed. Lemma subst_env_id x E : subst_env E (EId x) = if E !! x is Some t then thunk_to_expr t else EId x. Proof. by rewrite subst_env_eq. Qed. Lemma subst_env_alt E e : subst_env E e = subst (thunk_to_expr <$> E) e. Proof. done. Qed. (* Use the unfolding lemmas, don't rely on conversion *) Opaque subst_env'. Definition val_to_expr (v : val) : expr := match v with | VString s => EString s | VClo x E e => EAbs x (subst_env (delete x E) e) end. Lemma final_val_to_expr v : final (val_to_expr v). Proof. by destruct v. Qed. Lemma step_not_val_to_expr v e : val_to_expr v --> e → False. Proof. intros []%step_not_final. apply final_val_to_expr. Qed. Lemma subst_empty e : subst ∅ e = e. Proof. induction e; f_equal/=; auto. Qed. Lemma subst_env_empty e : subst_env ∅ e = e. Proof. rewrite subst_env_alt. apply subst_empty. Qed. Lemma interp_le {n1 n2 E e mv} : interp n1 E e = Res mv → n1 ≤ n2 → interp n2 E e = Res mv. Proof. revert n2 E e mv. induction n1 as [|n1 IH]; intros [|n2] E e mv He ?; [by (done || lia)..|]. rewrite interp_S in He; rewrite interp_S; destruct e; repeat match goal with | _ => case_match | H : context [(_ <$> ?mx)] |- _ => destruct mx eqn:?; simplify_res | H : ?r ≫= _ = _ |- _ => destruct r as [[]|] eqn:?; simplify_res | H : _ <$> ?r = _ |- _ => destruct r as [[]|] eqn:?; simplify_res | |- interp ?n ?E ?e ≫= _ = _ => erewrite (IH n E e) by (done || lia) | _ => progress simplify_res | _ => progress simplify_option_eq end; eauto with lia. Qed. Lemma interp_agree {n1 n2 E e mv1 mv2} : interp n1 E e = Res mv1 → interp n2 E e = Res mv2 → mv1 = mv2. Proof. intros He1 He2. apply (inj Res). destruct (total (≤) n1 n2). - rewrite -He2. symmetry. eauto using interp_le. - rewrite -He1. eauto using interp_le. Qed. Definition is_not_id (e : expr) : Prop := match e with EId _ => False | _ => True end. Lemma id_or_not e : (∃ x, e = EId x) ∨ is_not_id e. Proof. destruct e; naive_solver. Qed. Lemma interp_not_id n E e v : interp n E e = mret v → is_not_id (subst_env E e). Proof. revert E e v. induction n as [|n IH]; intros E e v; [done|]. rewrite interp_S. destruct e; simpl; try done. rewrite subst_env_id. destruct (_ !! _) as [[[]]|]; naive_solver. Qed. Fixpoint closed (X : stringset) (e : expr) : Prop := match e with | EString _ => True | EId x => x ∈ X | EAbs x e => closed ({[ x ]} ∪ X) e | EApp e1 e2 => closed X e1 ∧ closed X e2 end. Inductive closed_thunk (t : thunk) : Prop := { closed_thunk_env : map_Forall (λ _, closed_thunk) (thunk_env t); closed_thunk_expr : closed (dom (thunk_env t)) (thunk_expr t); }. Notation closed_env := (map_Forall (M:=env) (λ _, closed_thunk)). Definition closed_val (v : val) : Prop := match v with | VString _ => True | VClo x E e => closed_env E ∧ closed ({[x]} ∪ dom E) e end. Lemma closed_thunk_eq E e : closed_thunk (Thunk E e) ↔ closed_env E ∧ closed (dom E) e. Proof. split; inv 1; constructor; done. Qed. Lemma closed_env_delete x E : closed_env E → closed_env (delete x E). Proof. apply map_Forall_delete. Qed. Lemma closed_env_insert x t E : closed_thunk t → closed_env E → closed_env (<[x:=t]> E). Proof. apply: map_Forall_insert_2. Qed. Lemma closed_env_lookup E x t : closed_env E → E !! x = Some t → closed_thunk t. Proof. apply map_Forall_lookup_1. Qed. Lemma closed_subst E ds e : dom ds ## E → closed E e → subst ds e = e. Proof. revert E ds. induction e; intros E ds Hdisj Heclosed; simplify_eq/=; first done. - assert (Hxds : x ∉ dom ds) by set_solver. by rewrite (not_elem_of_dom_1 _ _ Hxds). - f_equal. by apply IHe with (E := {[x]} ∪ E); first set_solver. - f_equal; naive_solver. Qed. Lemma closed_weaken X Y e : closed X e → X ⊆ Y → closed Y e. Proof. revert X Y; induction e; naive_solver eauto with set_solver. Qed. Lemma subst_closed ds X e : map_Forall (λ _, closed ∅) ds → closed (dom ds ∪ X) e → closed X (subst ds e). Proof. revert X ds. induction e; intros X ds; repeat (case_decide || simplify_eq/=). - done. - intros. case_match. + apply H in H1. by eapply closed_weaken. + apply not_elem_of_dom in H1. set_solver. - intros. apply IHe. + by apply map_Forall_delete. + by rewrite dom_delete_L assoc_L difference_union_L [dom _ ∪ _]comm_L -assoc_L. - naive_solver. Qed. Lemma subst_env_delete_closed E X e x : closed_env E → closed ({[x]} ∪ X) (subst_env E e) → closed ({[x]} ∪ X) (subst_env (delete x E) e). Proof. revert E X x. induction e as [s | z | z e IHe | e1 IHe1 e2 IHe2]; intros E X x. - rewrite !subst_env_eq //. - rewrite !subst_env_eq /=. case_match. + destruct (decide (x = z)) as [->|?]. * rewrite lookup_delete. set_solver. * rewrite lookup_delete_ne // H //. + destruct (decide (x = z)) as [->|?]. * rewrite delete_notin // H //. * rewrite lookup_delete_ne // H //. - intros HE. rewrite [subst_env (delete _ _) _]subst_env_eq subst_env_eq /= delete_commute comm_L -assoc_L. by apply IHe, map_Forall_delete. - rewrite [subst_env (delete _ _) _]subst_env_eq subst_env_eq /=. naive_solver. Qed. Lemma subst_env_closed E X e : closed_env E → closed (dom E ∪ X) e → closed X (subst_env E e). Proof. revert e X. induction E using env_ind. induction e; intros X Hcenv Hclosed; simplify_eq/=. - done. - rewrite subst_env_eq. case_match. + destruct t as [Et et]; simpl. apply closed_env_lookup in H0 as Htclosed; last done. apply closed_thunk_eq in Htclosed as [HEtclosed Hetclosed]. apply (H _ _ H0); simpl. * exact HEtclosed. * eapply closed_weaken; set_solver. + simpl in *. apply not_elem_of_dom in H0. set_solver. - rewrite subst_env_eq. simpl in *. rewrite comm_L -assoc_L in Hclosed. apply IHe in Hclosed; last exact Hcenv. apply subst_env_delete_closed; first done. by rewrite comm_L. - rewrite subst_env_eq. naive_solver. Qed. Lemma thunk_to_expr_closed t : closed_thunk t → closed ∅ (thunk_to_expr t). Proof. destruct t as [E e]. intros [HEclosed Heclosed]%closed_thunk_eq. by apply subst_env_closed; last rewrite union_empty_r_L. Qed. Lemma subst_env_insert E x e t : closed_env E → subst_env (<[x:=t]> E) e = subst {[x:=thunk_to_expr t]} (subst_env (delete x E) e). Proof. revert E. induction e; intros E HEclosed; simpl. - done. - destruct (decide (x = x0)) as [->|?]. + rewrite subst_env_eq lookup_insert subst_env_id lookup_delete /= lookup_singleton. done. + rewrite subst_env_eq lookup_insert_ne // subst_env_id. destruct (E !! x0) eqn:Elookup. * apply closed_env_lookup in Elookup as Hc0closed; last done. apply thunk_to_expr_closed in Hc0closed. rewrite lookup_delete_ne // Elookup. by erewrite closed_subst with (E := ∅). * by rewrite lookup_delete_ne // Elookup /= lookup_singleton_ne. - rewrite (subst_env_eq (EAbs x0 e)) (subst_env_eq (EAbs _ _)) /=. f_equal. destruct (decide (x0 = x)) as [->|?]. + by rewrite delete_insert_delete delete_idemp delete_singleton subst_empty. + rewrite delete_insert_ne // delete_singleton_ne // delete_commute. apply IHe. by apply closed_env_delete. - rewrite (subst_env_eq (EApp _ _)) [subst_env (delete x E) _]subst_env_eq /=. f_equal; auto. Qed. Lemma subst_env_insert_eq e1 e2 E1 E2 x E1' E2' e1' e2' : closed_env E1 → closed_env E2 → subst_env (delete x E1) e1 = subst_env (delete x E2) e2 → subst_env E1' e1' = subst_env E2' e2' → subst_env (<[x:=Thunk E1' e1']> E1) e1 = subst_env (<[x:=Thunk E2' e2']> E2) e2. Proof. intros HE1closed HE2closed He' He. rewrite !subst_env_insert //=. by rewrite He' He. Qed. Lemma interp_closed n E e mv : closed_env E → closed (dom E) e → interp n E e = Res mv → if mv is Some v then closed_val v else True. Proof. revert E e mv. induction n; first done; intros E e mv HEclosed Heclosed Hinterp. destruct e. - rewrite interp_S /= in Hinterp. by destruct mv; simplify_res. - rewrite interp_S /= in Hinterp. simplify_option_eq. destruct (E !! x) eqn:Hlookup; simplify_res; try done. apply closed_env_lookup in Hlookup; last assumption. destruct t as [E' e']. apply closed_thunk_eq in Hlookup as [Henv Hexpr]. by apply IHn with (E := E') (e := e'). - rewrite interp_S /= in Hinterp. simplify_option_eq. destruct mv as [v|]; simplify_res. split_and!. + set_solver. + done. - rewrite interp_S /= in Hinterp. simplify_option_eq. destruct Heclosed as [He1closed He2closed]. destruct (interp n E e1) as [[[]|]|] eqn:Einterp; simplify_res; try done. apply IHn in Einterp; try done. simpl in Einterp. destruct Einterp as [Hinterp1 Hinterp2]. apply IHn in Hinterp; first done. + rewrite <-insert_delete_insert. apply map_Forall_insert; first apply lookup_delete. split. * by split. * by apply closed_env_delete. + by rewrite dom_insert_L. Qed. Lemma interp_proper n E1 E2 e1 e2 mv : closed_env E1 → closed_env E2 → closed (dom E1) e1 → closed (dom E2) e2 → subst_env E1 e1 = subst_env E2 e2 → interp n E1 e1 = Res mv → ∃ mw m, interp m E2 e2 = Res mw ∧ val_to_expr <$> mv = val_to_expr <$> mw. Proof. revert n E2 E1 e1 e2 mv. induction n as [|n IHn]; [done|]. intros E2. induction E2 as [E2 IH] using env_ind. intros E1 e1 e2 mv HE1closed HE2closed He1closed He2closed Hsubst Hinterp. destruct (id_or_not e1) as [[x ->]|?]. { rewrite interp_S /= in Hinterp. destruct (E1 !! x) as [[E' e']|] eqn:Hx; simplify_eq/=; last by apply not_elem_of_dom in Hx. rewrite subst_env_id Hx in Hsubst. apply closed_env_lookup in Hx; last done. rewrite closed_thunk_eq in Hx. destruct Hx as [HE'close He'closed]. eauto. } destruct (id_or_not e2) as [[x ->]|?]. { rewrite subst_env_id in Hsubst. destruct (E2 !! x) as [[E' e']|] eqn:Hx; simplify_eq/=. - apply closed_env_lookup in Hx as Hclosed; last done. rewrite closed_thunk_eq in Hclosed. destruct Hclosed as [HE'closed He'closed]. rewrite map_Forall_lookup in IH. odestruct (IH _ _ Hx) as (w & m & Hinterp' & Hw); first apply HE1closed; try done. exists w, (S m). by rewrite interp_S /= Hx /=. - destruct mv as [v|]. + apply interp_not_id in Hinterp. by rewrite Hsubst in Hinterp. + exists None, 1. by rewrite interp_S /= Hx. } rewrite (subst_env_eq e1) (subst_env_eq e2) in Hsubst. rewrite interp_S in Hinterp. destruct e1, e2; simplify_res; try done. - eexists (Some (VString _)), 1. by rewrite interp_S. - eexists (Some (VClo _ _ _)), 1. split; first by rewrite interp_S. by do 2 f_equal/=. - destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. destruct He1closed as [He1_1closed He1_2closed], He2closed as [He2_1closed He2_2closed]. apply interp_closed in Hinterp' as Hclosed; [|done..]. eapply IHn with (e2 := e2_1) in Hinterp' as (mw' & m1 & Hinterp1 & ?); try done. destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. { exists None, (S m1). by rewrite interp_S /= Hinterp1. } destruct (maybe3 VClo _) eqn:Hclo; simplify_res; last first. { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. by assert (maybe3 VClo w' = None) as -> by (by destruct v', w'). } destruct v', w'; simplify_eq/=. eapply IHn with (E2 := <[x0:=Thunk E2 e2_2]> E0) in Hinterp as (w & m2 & Hinterp2 & ?). + exists w, (S (m1 `max` m2)). rewrite interp_S /=. rewrite (interp_le Hinterp1) /=; last lia. rewrite (interp_le Hinterp2) /=; last lia. done. + rewrite -insert_delete_insert. apply map_Forall_insert; first apply lookup_delete. split; first done. apply closed_env_delete. naive_solver. + apply interp_closed in Hinterp1; [|done..]. rewrite /closed_val in Hinterp1. destruct Hinterp1 as [??]. by apply map_Forall_insert_2. + rewrite dom_insert_L. naive_solver. + rewrite dom_insert_L. apply interp_closed in Hinterp1; [|done..]. rewrite /closed_val in Hinterp1. by destruct Hinterp1 as [_ ?]. + apply interp_closed in Hinterp1; [|done..]. rewrite /closed_val in Hinterp1. destruct Hinterp1 as [? _]. apply subst_env_insert_eq; try naive_solver. Qed. Lemma subst_as_subst_env x e1 e2 : subst {[x:=e2]} e1 = subst_env (<[x:=Thunk ∅ e2]> ∅) e1. Proof. rewrite subst_env_insert //= !subst_env_empty //. Qed. Lemma interp_subst n x e1 e2 mv : closed {[x]} e1 → closed ∅ e2 → interp n ∅ (subst {[x:=e2]} e1) = Res mv → ∃ mw m, interp m (<[x:=Thunk ∅ e2]> ∅) e1 = Res mw ∧ val_to_expr <$> mv = val_to_expr <$> mw. Proof. intros He1 He2. apply interp_proper. - done. - by apply closed_env_insert. - apply subst_closed. + by apply map_Forall_singleton. + by rewrite dom_singleton_L dom_empty_L union_empty_r_L. - by rewrite insert_empty dom_singleton_L. - by rewrite subst_env_empty subst_as_subst_env. Qed. Lemma closed_step e1 e2 : closed ∅ e1 → e1 --> e2 → closed ∅ e2. Proof. intros Hclosed Hstep. revert Hclosed. induction Hstep; intros He1closed. - simplify_eq/=. destruct He1closed. apply subst_closed. + by eapply map_Forall_singleton. + by rewrite dom_singleton_L. - simplify_eq/=. destruct He1closed. auto. Qed. Lemma closed_steps e1 e2 : closed ∅ e1 → e1 -->* e2 → closed ∅ e2. Proof. induction 2; eauto using closed_step. Qed. Lemma interp_step e1 e2 n v : closed ∅ e1 → e1 --> e2 → interp n ∅ e2 = Res v → ∃ w m, interp m ∅ e1 = Res w ∧ val_to_expr <$> v = val_to_expr <$> w. Proof. intros He1closed Hstep. revert v n He1closed. induction Hstep as [|???? IH]; intros v n He1closed Hinterp. { rewrite /= union_empty_r_L in He1closed. destruct He1closed as [He1closed He2closed]. apply interp_subst in Hinterp as (w & [|m] & Hinterp & Hv); simplify_eq/=; [|done..]. exists w, (S (S m)). by rewrite !interp_S /= -interp_S. } simpl in He1closed. destruct He1closed as [He1closed He2closed]. destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. destruct (interp n _ _) eqn:Hinterp'; simplify_res. destruct x; simplify_res; last first. { apply IH in Hinterp' as (mw' & m1 & Hinterp1 & ?); simplify_res; last done. destruct mw'; try done. exists None, (S m1). by rewrite interp_S /= Hinterp1. } apply closed_step in Hstep as He1'closed; last done. apply interp_closed in Hinterp' as Hcloclosed; [|done|by rewrite dom_empty_L]. apply IH in Hinterp' as ([] & m1 & Hinterp1 & ?); simplify_eq/=; last done. destruct (maybe3 VClo _) eqn:Hclo; simplify_res; last first. { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. by assert (maybe3 VClo v1 = None) as -> by (by destruct v1, v0). } simplify_option_eq. simpl in Hcloclosed. destruct Hcloclosed as [HEclosed Heclosed]. apply interp_closed in Hinterp1 as Hcloclosed; [|done|by rewrite dom_empty_L]. simpl in Hcloclosed. destruct v1; simplify_option_eq. destruct Hcloclosed as [HE0closed He0closed]. eapply interp_proper with (E2 := <[x0:=Thunk ∅ e2]> E0) (e2 := e0) in Hinterp as (w & m2 & Hinterp2 & Hv); last apply subst_env_insert_eq. { exists w, (S (m1 `max` m2)). rewrite !interp_S /=. rewrite (interp_le Hinterp1) /=; last lia. by rewrite (interp_le Hinterp2) /=; last lia. } - by apply closed_env_insert. - by apply closed_env_insert. - by rewrite dom_insert_L. - by rewrite dom_insert_L. - done. - done. - done. - done. Qed. Lemma final_interp e : final e → ∃ w m, interp m ∅ e = mret w ∧ e = val_to_expr w. Proof. induction e; inv 1. - eexists (VString _), 1. by rewrite interp_S /=. - eexists (VClo _ _ _), 1. rewrite interp_S /=. split; [done|]. by rewrite delete_empty subst_env_empty. Qed. Lemma red_final_interp e : red step e ∨ final e ∨ ∃ m, interp m ∅ e = mfail. Proof. induction e. - (* ENat *) right; left. constructor. - (* EId *) do 2 right. by exists 1. - (* EAbs *) right; left. constructor. - (* EApp *) destruct IHe1 as [[??]|[Hfinal|[m Hinterp]]]. + left. by repeat econstructor. + apply final_interp in Hfinal as (w & m & Hinterp & ->). destruct (maybe3 VClo w) eqn:Hw. { destruct w; simplify_eq/=. left. by repeat econstructor. } do 2 right. exists (S m). by rewrite interp_S /= Hinterp /= Hw. + do 2 right. exists (S m). by rewrite interp_S /= Hinterp. Qed. Lemma interp_complete e1 e2 : closed ∅ e1 → e1 -->* e2 → nf step e2 → ∃ mw m, interp m ∅ e1 = Res mw ∧ if mw is Some w then e2 = val_to_expr w else ¬final e2. Proof. intros He1 Hsteps Hnf. induction Hsteps as [e|e1 e2 e3 Hstep _ IH]. { destruct (red_final_interp e) as [?|[Hfinal|[m Hinterp]]]; [done|..]. - apply final_interp in Hfinal as (w & m & ? & ?). by exists (Some w), m. - exists None, m. split; [done|]. intros Hfinal. apply final_interp in Hfinal as (w & m' & ? & _). by assert (mfail = mret w) by eauto using interp_agree. } apply closed_step in Hstep as He2; last assumption. destruct IH as (mw & m & Hinterp & ?); try done. eapply interp_step in Hinterp as (mw' & m' & ? & ?). - destruct mw, mw'; naive_solver. - done. - done. Qed. Lemma interp_complete_ret e1 e2 : closed ∅ e1 → e1 -->* e2 → final e2 → ∃ w m, interp m ∅ e1 = mret w ∧ e2 = val_to_expr w. Proof. intros Hclosed Hsteps Hfinal. apply interp_complete in Hsteps as ([w|] & m & ? & ?); naive_solver eauto using final_nf. Qed. Lemma interp_complete_fail e1 e2 : closed ∅ e1 → e1 -->* e2 → nf step e2 → ¬final e2 → ∃ m, interp m ∅ e1 = mfail. Proof. intros Hclosed Hsteps Hnf Hforce. apply interp_complete in Hsteps as ([w|] & m & ? & ?); simplify_eq/=; try by eauto. destruct Hforce. apply final_val_to_expr. Qed. Lemma interp_sound_open E e n mv : closed_env E → closed (dom E) e → interp n E e = Res mv → ∃ e', subst_env E e -->* e' ∧ if mv is Some v then e' = val_to_expr v else stuck e'. Proof. revert E e mv. induction n as [|n IH]; intros E e mv HEclosed Heclosed Hinterp; first done. rewrite subst_env_eq. rewrite interp_S in Hinterp. destruct e; simplify_res. - (* ENat *) by eexists. - (* EId *) destruct (_ !! _) as [[E' e]|] eqn:Hx; simplify_res. + apply closed_env_lookup in Hx as Hxclosed; last done. rewrite closed_thunk_eq in Hxclosed. destruct_and!. apply IH in Hinterp as (e' & Hsteps & He'); naive_solver. + eexists; repeat split; [done| |inv 1]. intros [? Hstep]. inv Hstep. - (* EAbs *) by eexists. - (* EApp *) destruct_and!. destruct (interp _ _ _) as [mv'|] eqn:Hinterp'; simplify_res. apply interp_closed in Hinterp' as Hvclosed; [|done..]. apply IH in Hinterp' as (e' & Hsteps & He'); [|done..]. destruct mv' as [v'|]; simplify_res; last first. { eexists; repeat split; [by apply SAppL_rtc| |inv 1]. intros [e'' Hstep]. destruct He' as [Hnf Hfinal]. inv Hstep; [by destruct Hfinal; constructor|]. destruct Hnf. eauto. } destruct (maybe3 VClo v') eqn:?; simplify_res; last first. { eexists; repeat split; [by apply SAppL_rtc| |inv 1]. intros [e'' Hstep]. inv Hstep; destruct v'; by repeat inv_step. } destruct v'; simplify_res. destruct_and!. apply IH in Hinterp as (e'' & Hsteps' & He''). + eexists; split; [|done]. etrans; [by apply SAppL_rtc|]. eapply rtc_l; first by constructor. rewrite subst_env_insert // in Hsteps'. + by apply closed_env_insert. + by rewrite dom_insert_L. Qed. Lemma interp_sound n e mv : closed ∅ e → interp n ∅ e = Res mv → ∃ e', e -->* e' ∧ if mv is Some v then e' = val_to_expr v else stuck e'. Proof. intros He Hsteps%interp_sound_open; try done. by rewrite subst_env_empty in Hsteps. Qed. (** Final theorems *) Theorem interp_sound_complete_ret e v : closed ∅ e → (∃ w n, interp n ∅ e = mret w ∧ val_to_expr v = val_to_expr w) ↔ e -->* val_to_expr v. Proof. split. - by intros (n & w & (e' & ? & ->)%interp_sound & ->). - intros Hsteps. apply interp_complete in Hsteps as ([] & ? & ? & ?); unfold nf, red; naive_solver eauto using final_val_to_expr, step_not_val_to_expr. Qed. Theorem interp_sound_complete_ret_string e s : closed ∅ e → (∃ n, interp n ∅ e = mret (VString s)) ↔ e -->* EString s. Proof. split. - by intros [n (e' & ? & ->)%interp_sound]. - intros Hsteps. apply interp_complete_ret in Hsteps as ([] & ? & ? & ?); simplify_eq/=; eauto. Qed. Theorem interp_sound_complete_fail e : closed ∅ e → (∃ n, interp n ∅ e = mfail) ↔ ∃ e', e -->* e' ∧ stuck e'. Proof. split. - by intros [n ?%interp_sound]. - intros (e' & Hsteps & Hnf & Hforced). by eapply interp_complete_fail. Qed. Theorem interp_sound_complete_no_fuel e : closed ∅ e → (∀ n, interp n ∅ e = NoFuel) ↔ all_loop step e. Proof. rewrite all_loop_alt. split. - intros Hnofuel e' Hsteps. destruct (red_final_interp e') as [|[|He']]; [done|..]. + apply interp_complete_ret in Hsteps as (w & m & Hinterp & _); [|done..]. by rewrite Hnofuel in Hinterp. + apply interp_sound_complete_fail in He' as (e'' & ? & [Hnf _]); last by eauto using closed_steps. destruct (interp_complete e e'') as (mv & n & Hinterp & _); [done|by etrans|done|]. by rewrite Hnofuel in Hinterp. - intros Hred n. destruct (interp n ∅ e) as [mv|] eqn:Hinterp; [|done]. apply interp_sound in Hinterp as (e' & Hsteps%Hred & Hstuck); [|done]. destruct mv as [v|]; simplify_eq/=. + apply final_nf in Hsteps as []. apply final_val_to_expr. + by destruct Hstuck as [[] ?]. Qed. End lambda.