From mininix Require Export utils. From stdpp Require Import options. Variant res A := | Res (x : option A) | NoFuel. Arguments Res {_} _. Arguments NoFuel {_}. Instance res_fail : MFail res := λ {A} _, Res None. Instance res_mret : MRet res := λ {A} x, Res (Some x). Instance res_mbind : MBind res := λ {A B} f rx, match rx with | Res mx => default mfail (f <$> mx) | NoFuel => NoFuel end. Instance res_fmap : FMap res := λ {A B} f rx, match rx with | Res mx => Res (f <$> mx) | NoFuel => NoFuel end. Instance Res_inj A : Inj (=) (=) (@Res A). Proof. by injection 1. Qed. Ltac simplify_res := repeat match goal with | H : Res _ = mfail |- _ => apply (inj Res) in H | H : mfail = Res _ |- _ => apply (inj Res) in H | H : Res _ = mret _ |- _ => apply (inj Res) in H | H : mret _ = Res _ |- _ => apply (inj Res) in H | _ => progress simplify_eq/= end. Lemma mapM_Res_impl {A B} (f g : A → res B) (xs : list A) ys : mapM f xs = Res ys → (∀ x y, f x = Res y → g x = Res y) → mapM g xs = Res ys. Proof. intros Hxs Hf. revert ys Hxs. induction xs as [|x xs IH]; intros ys ?; simplify_res; [done|]. destruct (f x) as [my|] eqn:?; simplify_res. rewrite (Hf x my) //=. destruct my as [y|]; simplify_res; [|done]. destruct (mapM f _) as [mys|]; simplify_res; [|done..]. by rewrite (IH _ eq_refl). Qed. Lemma map_mapM_sorted_Res_impl `{FinMap K M} (R : relation K) `{!RelDecision R, !PartialOrder R, !Total R} {A B} (f g : A → res B) (m1 : M A) m2 : map_mapM_sorted R f m1 = Res m2 → (∀ x y, f x = Res y → g x = Res y) → map_mapM_sorted R g m1 = Res m2. Proof. intros Hm Hf. revert m2 Hm. induction m1 as [|i x m1 ?? IH] using (map_sorted_ind R); intros m2. { by rewrite !map_mapM_sorted_empty. } rewrite !map_mapM_sorted_insert //. intros. destruct (f x) as [my|] eqn:?; simplify_res. rewrite (Hf x my) //=. destruct my as [y|]; simplify_res; [|done]. destruct (map_mapM_sorted _ f _) as [mm2'|]; simplify_res; [|done..]. by rewrite (IH _ eq_refl). Qed. Lemma mapM_res_app {A B} (f : A → res B) xs1 xs2 : mapM f (xs1 ++ xs2) = ys1 ← mapM f xs1; ys2 ← mapM f xs2; mret (ys1 ++ ys2). Proof. induction xs1 as [|x1 xs1 IH]; simpl. { by destruct (mapM f xs2) as [[]|]. } destruct (f x1) as [[y1|]|]; simpl; [|done..]. rewrite IH. by destruct (mapM f xs1) as [[]|], (mapM f xs2) as [[]|]. Qed.