1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
const std = @import("std");
const ascii = std.ascii;
const base32 = @import("base32.zig");
const crc16 = @import("crc16.zig");
const crypto = std.crypto;
const Ed25519 = crypto.sign.Ed25519;
const mem = std.mem;
const testing = std.testing;
pub const InvalidPrefixByteError = error{InvalidPrefixByte};
pub const InvalidEncodingError = error{InvalidEncoding};
pub const InvalidSeedError = error{InvalidSeed};
pub const NoNkeySeedFoundError = error{NoNkeySeedFound};
pub const NoNkeyUserSeedFoundError = error{NoNkeyUserSeedFound};
pub const KeyTypePrefixByte = enum(u8) {
seed = 18 << 3, // S
private = 15 << 3, // P
unknown = 23 << 3, // U
};
pub const PublicPrefixByte = enum(u8) {
account = 0, // A
cluster = 2 << 3, // C
operator = 14 << 3, // O
server = 13 << 3, // N
user = 20 << 3, // U
fn fromU8(b: u8) error{InvalidPrefixByte}!PublicPrefixByte {
return switch (b) {
@enumToInt(PublicPrefixByte.server) => .server,
@enumToInt(PublicPrefixByte.cluster) => .cluster,
@enumToInt(PublicPrefixByte.operator) => .operator,
@enumToInt(PublicPrefixByte.account) => .account,
@enumToInt(PublicPrefixByte.user) => .user,
else => error.InvalidPrefixByte,
};
}
};
pub const SeedKeyPair = struct {
const Self = @This();
seed: text_seed,
pub fn generate(prefix: PublicPrefixByte) Self {
var raw_seed: [Ed25519.seed_length]u8 = undefined;
crypto.random.bytes(&raw_seed);
defer wipeBytes(&raw_seed);
return Self{ .seed = encodeSeed(prefix, &raw_seed) };
}
pub fn fromTextSeed(seed: *const text_seed) SeedDecodeError!Self {
var decoded = try decodeSeed(seed);
decoded.wipe();
return Self{ .seed = seed.* };
}
pub fn fromRawSeed(prefix: PublicPrefixByte, raw_seed: *const [Ed25519.seed_length]u8) Self {
return Self{ .seed = encodeSeed(prefix, raw_seed) };
}
fn rawSeed(self: *const Self) SeedDecodeError![Ed25519.seed_length]u8 {
return (try decodeSeed(&self.seed)).seed;
}
fn keys(self: *const Self) (SeedDecodeError || crypto.errors.IdentityElementError)!Ed25519.KeyPair {
return Ed25519.KeyPair.create(try rawSeed(self));
}
pub fn privateKey(self: *const Self) (SeedDecodeError || crypto.errors.IdentityElementError)!text_private {
var kp = try self.keys();
defer wipeKeyPair(&kp);
return encodePrivate(&kp.secret_key);
}
pub fn publicKey(self: *const Self) (SeedDecodeError || crypto.errors.IdentityElementError)!text_public {
var decoded = try decodeSeed(&self.seed);
defer decoded.wipe();
var kp = try Ed25519.KeyPair.create(decoded.seed);
defer wipeKeyPair(&kp);
return encodePublic(decoded.prefix, &kp.public_key);
}
pub fn intoPublicKey(self: *const Self) (SeedDecodeError || crypto.errors.IdentityElementError)!PublicKey {
var decoded = try decodeSeed(&self.seed);
defer decoded.wipe();
var kp = try Ed25519.KeyPair.create(decoded.seed);
defer wipeKeyPair(&kp);
return PublicKey{
.prefix = decoded.prefix,
.key = kp.public_key,
};
}
pub const SignError = SeedDecodeError || crypto.errors.IdentityElementError || crypto.errors.WeakPublicKeyError;
pub fn sign(
self: *const Self,
msg: []const u8,
) SignError![Ed25519.signature_length]u8 {
var kp = try self.keys();
defer wipeKeyPair(&kp);
return Ed25519.sign(msg, kp, null) catch |e| switch (e) {
error.KeyMismatch => unreachable, // would mean that self.keys() has an incorrect implementation
error.WeakPublicKey => error.WeakPublicKey,
error.IdentityElement => error.IdentityElement,
};
}
pub fn verify(
self: *const Self,
msg: []const u8,
sig: [Ed25519.signature_length]u8,
) !void {
var kp = try self.keys();
defer wipeKeyPair(&kp);
Ed25519.verify(sig, msg, kp.public_key) catch return error.InvalidSignature;
}
pub fn wipe(self: *Self) void {
wipeBytes(&self.seed);
}
fn wipeKeyPair(kp: *Ed25519.KeyPair) void {
wipeBytes(&kp.secret_key);
}
};
fn wipeBytes(bs: []u8) void {
for (bs) |*b| b.* = 0;
}
pub const PublicKey = struct {
const Self = @This();
prefix: PublicPrefixByte,
key: [Ed25519.public_length]u8,
pub fn fromTextPublicKey(text: *const text_public) DecodeError!PublicKey {
var decoded = try decode(1, Ed25519.public_length, text);
defer decoded.wipe(); // gets copied
return PublicKey{
.prefix = try PublicPrefixByte.fromU8(decoded.prefix[0]),
.key = decoded.data,
};
}
pub fn publicKey(self: *const Self) text_public {
return encodePublic(self.prefix, &self.key);
}
pub fn verify(
self: *const Self,
msg: []const u8,
sig: [Ed25519.signature_length]u8,
) !void {
Ed25519.verify(sig, msg, self.key) catch return error.InvalidSignature;
}
pub fn wipe(self: *Self) void {
self.prefix = .account;
wipeBytes(&self.key);
}
};
// One prefix byte, two CRC bytes
const binary_private_size = 1 + Ed25519.secret_length + 2;
// One prefix byte, two CRC bytes
const binary_public_size = 1 + Ed25519.public_length + 2;
// Two prefix bytes, two CRC bytes
const binary_seed_size = 2 + Ed25519.seed_length + 2;
pub const text_private_len = base32.Encoder.calcSize(binary_private_size);
pub const text_public_len = base32.Encoder.calcSize(binary_public_size);
pub const text_seed_len = base32.Encoder.calcSize(binary_seed_size);
pub const text_private = [text_private_len]u8;
pub const text_public = [text_public_len]u8;
pub const text_seed = [text_seed_len]u8;
fn encodePublic(prefix: PublicPrefixByte, key: *const [Ed25519.public_length]u8) text_public {
return encode(1, key.len, &[_]u8{@enumToInt(prefix)}, key);
}
fn encodePrivate(key: *const [Ed25519.secret_length]u8) text_private {
return encode(1, key.len, &[_]u8{@enumToInt(KeyTypePrefixByte.private)}, key);
}
fn encoded_key(comptime prefix_len: usize, comptime data_len: usize) type {
return [base32.Encoder.calcSize(prefix_len + data_len + 2)]u8;
}
fn encode(
comptime prefix_len: usize,
comptime data_len: usize,
prefix: *const [prefix_len]u8,
data: *const [data_len]u8,
) encoded_key(prefix_len, data_len) {
var buf: [prefix_len + data_len + 2]u8 = undefined;
defer wipeBytes(&buf);
mem.copy(u8, &buf, prefix[0..]);
mem.copy(u8, buf[prefix_len..], data[0..]);
var off = prefix_len + data_len;
var checksum = crc16.make(buf[0..off]);
mem.writeIntLittle(u16, buf[buf.len - 2 .. buf.len], checksum);
var text: encoded_key(prefix_len, data_len) = undefined;
std.debug.assert(base32.Encoder.encode(&text, &buf).len == text.len);
return text;
}
pub fn encodeSeed(prefix: PublicPrefixByte, src: *const [Ed25519.seed_length]u8) text_seed {
const full_prefix = &[_]u8{
@enumToInt(KeyTypePrefixByte.seed) | (@enumToInt(prefix) >> 5),
(@enumToInt(prefix) & 0b00011111) << 3,
};
return encode(full_prefix.len, src.len, full_prefix, src);
}
pub const DecodeError = InvalidPrefixByteError || base32.DecodeError || crc16.InvalidChecksumError;
fn DecodedNkey(comptime prefix_len: usize, comptime data_len: usize) type {
return struct {
const Self = @This();
prefix: [prefix_len]u8,
data: [data_len]u8,
pub fn wipe(self: *Self) void {
self.prefix[0] = @enumToInt(PublicPrefixByte.account);
wipeBytes(&self.data);
}
};
}
fn decode(
comptime prefix_len: usize,
comptime data_len: usize,
text: *const [base32.Encoder.calcSize(prefix_len + data_len + 2)]u8,
) (base32.DecodeError || crc16.InvalidChecksumError)!DecodedNkey(prefix_len, data_len) {
var raw: [prefix_len + data_len + 2]u8 = undefined;
defer wipeBytes(&raw);
std.debug.assert((try base32.Decoder.decode(&raw, text[0..])).len == raw.len);
var checksum = mem.readIntLittle(u16, raw[raw.len - 2 .. raw.len]);
try crc16.validate(raw[0 .. raw.len - 2], checksum);
return DecodedNkey(prefix_len, data_len){
.prefix = raw[0..prefix_len].*,
.data = raw[prefix_len .. raw.len - 2].*,
};
}
pub const DecodedSeed = struct {
const Self = @This();
prefix: PublicPrefixByte,
seed: [Ed25519.seed_length]u8,
pub fn wipe(self: *Self) void {
self.prefix = .account;
wipeBytes(&self.seed);
}
};
pub const SeedDecodeError = DecodeError || InvalidSeedError;
pub fn decodeSeed(text: *const text_seed) SeedDecodeError!DecodedSeed {
var decoded = try decode(2, Ed25519.seed_length, text);
defer decoded.wipe(); // gets copied
var key_ty_prefix = decoded.prefix[0] & 0b11111000;
var entity_ty_prefix = (decoded.prefix[0] << 5) | (decoded.prefix[1] >> 3);
if (key_ty_prefix != @enumToInt(KeyTypePrefixByte.seed))
return error.InvalidSeed;
return DecodedSeed{
.prefix = try PublicPrefixByte.fromU8(entity_ty_prefix),
.seed = decoded.data,
};
}
pub fn isValidEncoding(text: []const u8) bool {
if (text.len < 4) return false;
var made_crc: u16 = 0;
var dec = base32.Decoder.init(text);
var crc_buf: [2]u8 = undefined;
var crc_buf_len: u8 = 0;
var expect_len: usize = base32.Decoder.calcSize(text.len);
var wrote_n_total: usize = 0;
while (dec.next() catch return false) |b| {
wrote_n_total += 1;
if (crc_buf_len == 2) made_crc = crc16.update(made_crc, &.{crc_buf[0]});
crc_buf[0] = crc_buf[1];
crc_buf[1] = b;
if (crc_buf_len != 2) crc_buf_len += 1;
}
std.debug.assert(wrote_n_total == expect_len);
if (crc_buf_len != 2) unreachable;
var got_crc = mem.readIntLittle(u16, &crc_buf);
return made_crc == got_crc;
}
pub fn isValidSeed(text: *const text_seed) bool {
var res = decodeSeed(text) catch return false;
res.wipe();
return true;
}
pub fn isValidPublicKey(text: *const text_public, with_type: ?PublicPrefixByte) bool {
var res = decode(1, Ed25519.public_length, text) catch return false;
defer res.wipe();
const public = PublicPrefixByte.fromU8(res.data[0]) catch return false;
return if (with_type) |ty| public == ty else true;
}
// `line` must not contain CR or LF characters.
pub fn isKeySectionBarrier(line: []const u8) bool {
return line.len >= 6 and mem.startsWith(u8, line, "---") and mem.endsWith(u8, line, "---");
}
const allowed_creds_section_chars_table: [256]bool = allowed: {
var table = [_]bool{false} ** 256;
const chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_-.=";
for (chars) |char| table[char] = true;
break :allowed table;
};
pub fn areKeySectionContentsValid(contents: []const u8) bool {
for (contents) |c| if (!allowed_creds_section_chars_table[c]) return false;
return true;
}
pub fn findKeySection(text: []const u8, line_it: *std.mem.SplitIterator) ?[]const u8 {
// TODO(rutgerbrf): There is a weird edge case in the github.com/nats-io/nkeys library,
// see https://regex101.com/r/pEaqcJ/1. It allows the opening barrier to start at an
// arbitrary point on the line, meaning that `asdf-----BEGIN USER NKEY SEED-----`
// is regarded as a valid opening barrier by the library.
// Should we accept a creds file formatted in such a manner?
while (true) {
const opening_line = line_it.next() orelse return null;
if (!isKeySectionBarrier(opening_line)) continue;
const contents_line = line_it.next() orelse return null;
if (!areKeySectionContentsValid(contents_line)) continue;
const closing_line = line_it.next() orelse return null;
if (!isKeySectionBarrier(closing_line)) continue;
return contents_line;
}
}
pub fn parseDecoratedJwt(contents: []const u8) []const u8 {
var line_it = mem.split(contents, "\n");
return findKeySection(contents, &line_it) orelse return contents;
}
fn validNkey(text: []const u8) bool {
const valid_prefix =
mem.startsWith(u8, text, "SO") or
mem.startsWith(u8, text, "SA") or
mem.startsWith(u8, text, "SU");
const valid_len = text.len >= text_seed_len;
return valid_prefix and valid_len;
}
fn findNkey(text: []const u8) ?[]const u8 {
var line_it = std.mem.split(text, "\n");
var current_off: usize = 0;
while (line_it.next()) |line| {
for (line) |c, i| {
if (!ascii.isSpace(c)) {
if (validNkey(line[i..])) return line[i..];
break;
}
}
}
return null;
}
pub fn parseDecoratedNkey(contents: []const u8) NoNkeySeedFoundError!SeedKeyPair {
var line_it = mem.split(contents, "\n");
var current_off: usize = 0;
var seed: ?[]const u8 = null;
if (findKeySection(contents, &line_it) != null)
seed = findKeySection(contents, &line_it);
if (seed == null)
seed = findNkey(contents) orelse return error.NoNkeySeedFound;
if (!validNkey(seed.?))
return error.NoNkeySeedFound;
return SeedKeyPair.fromTextSeed(seed.?[0..text_seed_len]) catch return error.NoNkeySeedFound;
}
pub fn parseDecoratedUserNkey(contents: []const u8) (NoNkeySeedFoundError || NoNkeyUserSeedFoundError)!SeedKeyPair {
var key = try parseDecoratedNkey(contents);
if (!mem.startsWith(u8, &key.seed, "SU")) return error.NoNkeyUserSeedFound;
defer key.wipe();
return key;
}
test {
testing.refAllDecls(@This());
testing.refAllDecls(SeedKeyPair);
testing.refAllDecls(PublicKey);
}
test {
var key_pair = SeedKeyPair.generate(PublicPrefixByte.server);
defer key_pair.wipe();
var decoded_seed = try decodeSeed(&key_pair.seed);
defer decoded_seed.wipe();
var encoded_second_time = encodeSeed(decoded_seed.prefix, &decoded_seed.seed);
defer wipeBytes(&encoded_second_time);
try testing.expectEqualSlices(u8, &key_pair.seed, &encoded_second_time);
try testing.expect(isValidEncoding(&key_pair.seed));
var pub_key_str_a = try key_pair.publicKey();
defer wipeBytes(&pub_key_str_a);
var priv_key_str = try key_pair.privateKey();
defer wipeBytes(&priv_key_str);
try testing.expect(pub_key_str_a.len != 0);
try testing.expect(priv_key_str.len != 0);
try testing.expect(isValidEncoding(&pub_key_str_a));
try testing.expect(isValidEncoding(&priv_key_str));
var pub_key = try key_pair.intoPublicKey();
defer pub_key.wipe();
var pub_key_str_b = pub_key.publicKey();
defer wipeBytes(&pub_key_str_b);
try testing.expectEqualSlices(u8, &pub_key_str_a, &pub_key_str_b);
}
test {
var creds_bytes = try std.fs.cwd().readFileAlloc(testing.allocator, "fixtures/test.creds", std.math.maxInt(usize));
defer testing.allocator.free(creds_bytes);
defer wipeBytes(creds_bytes);
// TODO(rutgerbrf): validate the contents of the results of these functions
_ = try parseDecoratedUserNkey(creds_bytes);
_ = parseDecoratedJwt(creds_bytes);
}
|