aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/golang.org/x/sys/unix/syscall_unix.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/sys/unix/syscall_unix.go')
-rw-r--r--vendor/golang.org/x/sys/unix/syscall_unix.go606
1 files changed, 606 insertions, 0 deletions
diff --git a/vendor/golang.org/x/sys/unix/syscall_unix.go b/vendor/golang.org/x/sys/unix/syscall_unix.go
new file mode 100644
index 0000000..77081de
--- /dev/null
+++ b/vendor/golang.org/x/sys/unix/syscall_unix.go
@@ -0,0 +1,606 @@
1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris
6
7package unix
8
9import (
10 "bytes"
11 "sort"
12 "sync"
13 "syscall"
14 "unsafe"
15)
16
17var (
18 Stdin = 0
19 Stdout = 1
20 Stderr = 2
21)
22
23// Do the interface allocations only once for common
24// Errno values.
25var (
26 errEAGAIN error = syscall.EAGAIN
27 errEINVAL error = syscall.EINVAL
28 errENOENT error = syscall.ENOENT
29)
30
31var (
32 signalNameMapOnce sync.Once
33 signalNameMap map[string]syscall.Signal
34)
35
36// errnoErr returns common boxed Errno values, to prevent
37// allocations at runtime.
38func errnoErr(e syscall.Errno) error {
39 switch e {
40 case 0:
41 return nil
42 case EAGAIN:
43 return errEAGAIN
44 case EINVAL:
45 return errEINVAL
46 case ENOENT:
47 return errENOENT
48 }
49 return e
50}
51
52// ErrnoName returns the error name for error number e.
53func ErrnoName(e syscall.Errno) string {
54 i := sort.Search(len(errorList), func(i int) bool {
55 return errorList[i].num >= e
56 })
57 if i < len(errorList) && errorList[i].num == e {
58 return errorList[i].name
59 }
60 return ""
61}
62
63// SignalName returns the signal name for signal number s.
64func SignalName(s syscall.Signal) string {
65 i := sort.Search(len(signalList), func(i int) bool {
66 return signalList[i].num >= s
67 })
68 if i < len(signalList) && signalList[i].num == s {
69 return signalList[i].name
70 }
71 return ""
72}
73
74// SignalNum returns the syscall.Signal for signal named s,
75// or 0 if a signal with such name is not found.
76// The signal name should start with "SIG".
77func SignalNum(s string) syscall.Signal {
78 signalNameMapOnce.Do(func() {
79 signalNameMap = make(map[string]syscall.Signal, len(signalList))
80 for _, signal := range signalList {
81 signalNameMap[signal.name] = signal.num
82 }
83 })
84 return signalNameMap[s]
85}
86
87// clen returns the index of the first NULL byte in n or len(n) if n contains no NULL byte.
88func clen(n []byte) int {
89 i := bytes.IndexByte(n, 0)
90 if i == -1 {
91 i = len(n)
92 }
93 return i
94}
95
96// Mmap manager, for use by operating system-specific implementations.
97
98type mmapper struct {
99 sync.Mutex
100 active map[*byte][]byte // active mappings; key is last byte in mapping
101 mmap func(addr, length uintptr, prot, flags, fd int, offset int64) (uintptr, error)
102 munmap func(addr uintptr, length uintptr) error
103}
104
105func (m *mmapper) Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
106 if length <= 0 {
107 return nil, EINVAL
108 }
109
110 // Map the requested memory.
111 addr, errno := m.mmap(0, uintptr(length), prot, flags, fd, offset)
112 if errno != nil {
113 return nil, errno
114 }
115
116 // Use unsafe to convert addr into a []byte.
117 b := unsafe.Slice((*byte)(unsafe.Pointer(addr)), length)
118
119 // Register mapping in m and return it.
120 p := &b[cap(b)-1]
121 m.Lock()
122 defer m.Unlock()
123 m.active[p] = b
124 return b, nil
125}
126
127func (m *mmapper) Munmap(data []byte) (err error) {
128 if len(data) == 0 || len(data) != cap(data) {
129 return EINVAL
130 }
131
132 // Find the base of the mapping.
133 p := &data[cap(data)-1]
134 m.Lock()
135 defer m.Unlock()
136 b := m.active[p]
137 if b == nil || &b[0] != &data[0] {
138 return EINVAL
139 }
140
141 // Unmap the memory and update m.
142 if errno := m.munmap(uintptr(unsafe.Pointer(&b[0])), uintptr(len(b))); errno != nil {
143 return errno
144 }
145 delete(m.active, p)
146 return nil
147}
148
149func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
150 return mapper.Mmap(fd, offset, length, prot, flags)
151}
152
153func Munmap(b []byte) (err error) {
154 return mapper.Munmap(b)
155}
156
157func Read(fd int, p []byte) (n int, err error) {
158 n, err = read(fd, p)
159 if raceenabled {
160 if n > 0 {
161 raceWriteRange(unsafe.Pointer(&p[0]), n)
162 }
163 if err == nil {
164 raceAcquire(unsafe.Pointer(&ioSync))
165 }
166 }
167 return
168}
169
170func Write(fd int, p []byte) (n int, err error) {
171 if raceenabled {
172 raceReleaseMerge(unsafe.Pointer(&ioSync))
173 }
174 n, err = write(fd, p)
175 if raceenabled && n > 0 {
176 raceReadRange(unsafe.Pointer(&p[0]), n)
177 }
178 return
179}
180
181func Pread(fd int, p []byte, offset int64) (n int, err error) {
182 n, err = pread(fd, p, offset)
183 if raceenabled {
184 if n > 0 {
185 raceWriteRange(unsafe.Pointer(&p[0]), n)
186 }
187 if err == nil {
188 raceAcquire(unsafe.Pointer(&ioSync))
189 }
190 }
191 return
192}
193
194func Pwrite(fd int, p []byte, offset int64) (n int, err error) {
195 if raceenabled {
196 raceReleaseMerge(unsafe.Pointer(&ioSync))
197 }
198 n, err = pwrite(fd, p, offset)
199 if raceenabled && n > 0 {
200 raceReadRange(unsafe.Pointer(&p[0]), n)
201 }
202 return
203}
204
205// For testing: clients can set this flag to force
206// creation of IPv6 sockets to return EAFNOSUPPORT.
207var SocketDisableIPv6 bool
208
209// Sockaddr represents a socket address.
210type Sockaddr interface {
211 sockaddr() (ptr unsafe.Pointer, len _Socklen, err error) // lowercase; only we can define Sockaddrs
212}
213
214// SockaddrInet4 implements the Sockaddr interface for AF_INET type sockets.
215type SockaddrInet4 struct {
216 Port int
217 Addr [4]byte
218 raw RawSockaddrInet4
219}
220
221// SockaddrInet6 implements the Sockaddr interface for AF_INET6 type sockets.
222type SockaddrInet6 struct {
223 Port int
224 ZoneId uint32
225 Addr [16]byte
226 raw RawSockaddrInet6
227}
228
229// SockaddrUnix implements the Sockaddr interface for AF_UNIX type sockets.
230type SockaddrUnix struct {
231 Name string
232 raw RawSockaddrUnix
233}
234
235func Bind(fd int, sa Sockaddr) (err error) {
236 ptr, n, err := sa.sockaddr()
237 if err != nil {
238 return err
239 }
240 return bind(fd, ptr, n)
241}
242
243func Connect(fd int, sa Sockaddr) (err error) {
244 ptr, n, err := sa.sockaddr()
245 if err != nil {
246 return err
247 }
248 return connect(fd, ptr, n)
249}
250
251func Getpeername(fd int) (sa Sockaddr, err error) {
252 var rsa RawSockaddrAny
253 var len _Socklen = SizeofSockaddrAny
254 if err = getpeername(fd, &rsa, &len); err != nil {
255 return
256 }
257 return anyToSockaddr(fd, &rsa)
258}
259
260func GetsockoptByte(fd, level, opt int) (value byte, err error) {
261 var n byte
262 vallen := _Socklen(1)
263 err = getsockopt(fd, level, opt, unsafe.Pointer(&n), &vallen)
264 return n, err
265}
266
267func GetsockoptInt(fd, level, opt int) (value int, err error) {
268 var n int32
269 vallen := _Socklen(4)
270 err = getsockopt(fd, level, opt, unsafe.Pointer(&n), &vallen)
271 return int(n), err
272}
273
274func GetsockoptInet4Addr(fd, level, opt int) (value [4]byte, err error) {
275 vallen := _Socklen(4)
276 err = getsockopt(fd, level, opt, unsafe.Pointer(&value[0]), &vallen)
277 return value, err
278}
279
280func GetsockoptIPMreq(fd, level, opt int) (*IPMreq, error) {
281 var value IPMreq
282 vallen := _Socklen(SizeofIPMreq)
283 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
284 return &value, err
285}
286
287func GetsockoptIPv6Mreq(fd, level, opt int) (*IPv6Mreq, error) {
288 var value IPv6Mreq
289 vallen := _Socklen(SizeofIPv6Mreq)
290 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
291 return &value, err
292}
293
294func GetsockoptIPv6MTUInfo(fd, level, opt int) (*IPv6MTUInfo, error) {
295 var value IPv6MTUInfo
296 vallen := _Socklen(SizeofIPv6MTUInfo)
297 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
298 return &value, err
299}
300
301func GetsockoptICMPv6Filter(fd, level, opt int) (*ICMPv6Filter, error) {
302 var value ICMPv6Filter
303 vallen := _Socklen(SizeofICMPv6Filter)
304 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
305 return &value, err
306}
307
308func GetsockoptLinger(fd, level, opt int) (*Linger, error) {
309 var linger Linger
310 vallen := _Socklen(SizeofLinger)
311 err := getsockopt(fd, level, opt, unsafe.Pointer(&linger), &vallen)
312 return &linger, err
313}
314
315func GetsockoptTimeval(fd, level, opt int) (*Timeval, error) {
316 var tv Timeval
317 vallen := _Socklen(unsafe.Sizeof(tv))
318 err := getsockopt(fd, level, opt, unsafe.Pointer(&tv), &vallen)
319 return &tv, err
320}
321
322func GetsockoptUint64(fd, level, opt int) (value uint64, err error) {
323 var n uint64
324 vallen := _Socklen(8)
325 err = getsockopt(fd, level, opt, unsafe.Pointer(&n), &vallen)
326 return n, err
327}
328
329func Recvfrom(fd int, p []byte, flags int) (n int, from Sockaddr, err error) {
330 var rsa RawSockaddrAny
331 var len _Socklen = SizeofSockaddrAny
332 if n, err = recvfrom(fd, p, flags, &rsa, &len); err != nil {
333 return
334 }
335 if rsa.Addr.Family != AF_UNSPEC {
336 from, err = anyToSockaddr(fd, &rsa)
337 }
338 return
339}
340
341// Recvmsg receives a message from a socket using the recvmsg system call. The
342// received non-control data will be written to p, and any "out of band"
343// control data will be written to oob. The flags are passed to recvmsg.
344//
345// The results are:
346// - n is the number of non-control data bytes read into p
347// - oobn is the number of control data bytes read into oob; this may be interpreted using [ParseSocketControlMessage]
348// - recvflags is flags returned by recvmsg
349// - from is the address of the sender
350//
351// If the underlying socket type is not SOCK_DGRAM, a received message
352// containing oob data and a single '\0' of non-control data is treated as if
353// the message contained only control data, i.e. n will be zero on return.
354func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
355 var iov [1]Iovec
356 if len(p) > 0 {
357 iov[0].Base = &p[0]
358 iov[0].SetLen(len(p))
359 }
360 var rsa RawSockaddrAny
361 n, oobn, recvflags, err = recvmsgRaw(fd, iov[:], oob, flags, &rsa)
362 // source address is only specified if the socket is unconnected
363 if rsa.Addr.Family != AF_UNSPEC {
364 from, err = anyToSockaddr(fd, &rsa)
365 }
366 return
367}
368
369// RecvmsgBuffers receives a message from a socket using the recvmsg system
370// call. This function is equivalent to Recvmsg, but non-control data read is
371// scattered into the buffers slices.
372func RecvmsgBuffers(fd int, buffers [][]byte, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
373 iov := make([]Iovec, len(buffers))
374 for i := range buffers {
375 if len(buffers[i]) > 0 {
376 iov[i].Base = &buffers[i][0]
377 iov[i].SetLen(len(buffers[i]))
378 } else {
379 iov[i].Base = (*byte)(unsafe.Pointer(&_zero))
380 }
381 }
382 var rsa RawSockaddrAny
383 n, oobn, recvflags, err = recvmsgRaw(fd, iov, oob, flags, &rsa)
384 if err == nil && rsa.Addr.Family != AF_UNSPEC {
385 from, err = anyToSockaddr(fd, &rsa)
386 }
387 return
388}
389
390// Sendmsg sends a message on a socket to an address using the sendmsg system
391// call. This function is equivalent to SendmsgN, but does not return the
392// number of bytes actually sent.
393func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
394 _, err = SendmsgN(fd, p, oob, to, flags)
395 return
396}
397
398// SendmsgN sends a message on a socket to an address using the sendmsg system
399// call. p contains the non-control data to send, and oob contains the "out of
400// band" control data. The flags are passed to sendmsg. The number of
401// non-control bytes actually written to the socket is returned.
402//
403// Some socket types do not support sending control data without accompanying
404// non-control data. If p is empty, and oob contains control data, and the
405// underlying socket type is not SOCK_DGRAM, p will be treated as containing a
406// single '\0' and the return value will indicate zero bytes sent.
407//
408// The Go function Recvmsg, if called with an empty p and a non-empty oob,
409// will read and ignore this additional '\0'. If the message is received by
410// code that does not use Recvmsg, or that does not use Go at all, that code
411// will need to be written to expect and ignore the additional '\0'.
412//
413// If you need to send non-empty oob with p actually empty, and if the
414// underlying socket type supports it, you can do so via a raw system call as
415// follows:
416//
417// msg := &unix.Msghdr{
418// Control: &oob[0],
419// }
420// msg.SetControllen(len(oob))
421// n, _, errno := unix.Syscall(unix.SYS_SENDMSG, uintptr(fd), uintptr(unsafe.Pointer(msg)), flags)
422func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
423 var iov [1]Iovec
424 if len(p) > 0 {
425 iov[0].Base = &p[0]
426 iov[0].SetLen(len(p))
427 }
428 var ptr unsafe.Pointer
429 var salen _Socklen
430 if to != nil {
431 ptr, salen, err = to.sockaddr()
432 if err != nil {
433 return 0, err
434 }
435 }
436 return sendmsgN(fd, iov[:], oob, ptr, salen, flags)
437}
438
439// SendmsgBuffers sends a message on a socket to an address using the sendmsg
440// system call. This function is equivalent to SendmsgN, but the non-control
441// data is gathered from buffers.
442func SendmsgBuffers(fd int, buffers [][]byte, oob []byte, to Sockaddr, flags int) (n int, err error) {
443 iov := make([]Iovec, len(buffers))
444 for i := range buffers {
445 if len(buffers[i]) > 0 {
446 iov[i].Base = &buffers[i][0]
447 iov[i].SetLen(len(buffers[i]))
448 } else {
449 iov[i].Base = (*byte)(unsafe.Pointer(&_zero))
450 }
451 }
452 var ptr unsafe.Pointer
453 var salen _Socklen
454 if to != nil {
455 ptr, salen, err = to.sockaddr()
456 if err != nil {
457 return 0, err
458 }
459 }
460 return sendmsgN(fd, iov, oob, ptr, salen, flags)
461}
462
463func Send(s int, buf []byte, flags int) (err error) {
464 return sendto(s, buf, flags, nil, 0)
465}
466
467func Sendto(fd int, p []byte, flags int, to Sockaddr) (err error) {
468 var ptr unsafe.Pointer
469 var salen _Socklen
470 if to != nil {
471 ptr, salen, err = to.sockaddr()
472 if err != nil {
473 return err
474 }
475 }
476 return sendto(fd, p, flags, ptr, salen)
477}
478
479func SetsockoptByte(fd, level, opt int, value byte) (err error) {
480 return setsockopt(fd, level, opt, unsafe.Pointer(&value), 1)
481}
482
483func SetsockoptInt(fd, level, opt int, value int) (err error) {
484 var n = int32(value)
485 return setsockopt(fd, level, opt, unsafe.Pointer(&n), 4)
486}
487
488func SetsockoptInet4Addr(fd, level, opt int, value [4]byte) (err error) {
489 return setsockopt(fd, level, opt, unsafe.Pointer(&value[0]), 4)
490}
491
492func SetsockoptIPMreq(fd, level, opt int, mreq *IPMreq) (err error) {
493 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), SizeofIPMreq)
494}
495
496func SetsockoptIPv6Mreq(fd, level, opt int, mreq *IPv6Mreq) (err error) {
497 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), SizeofIPv6Mreq)
498}
499
500func SetsockoptICMPv6Filter(fd, level, opt int, filter *ICMPv6Filter) error {
501 return setsockopt(fd, level, opt, unsafe.Pointer(filter), SizeofICMPv6Filter)
502}
503
504func SetsockoptLinger(fd, level, opt int, l *Linger) (err error) {
505 return setsockopt(fd, level, opt, unsafe.Pointer(l), SizeofLinger)
506}
507
508func SetsockoptString(fd, level, opt int, s string) (err error) {
509 var p unsafe.Pointer
510 if len(s) > 0 {
511 p = unsafe.Pointer(&[]byte(s)[0])
512 }
513 return setsockopt(fd, level, opt, p, uintptr(len(s)))
514}
515
516func SetsockoptTimeval(fd, level, opt int, tv *Timeval) (err error) {
517 return setsockopt(fd, level, opt, unsafe.Pointer(tv), unsafe.Sizeof(*tv))
518}
519
520func SetsockoptUint64(fd, level, opt int, value uint64) (err error) {
521 return setsockopt(fd, level, opt, unsafe.Pointer(&value), 8)
522}
523
524func Socket(domain, typ, proto int) (fd int, err error) {
525 if domain == AF_INET6 && SocketDisableIPv6 {
526 return -1, EAFNOSUPPORT
527 }
528 fd, err = socket(domain, typ, proto)
529 return
530}
531
532func Socketpair(domain, typ, proto int) (fd [2]int, err error) {
533 var fdx [2]int32
534 err = socketpair(domain, typ, proto, &fdx)
535 if err == nil {
536 fd[0] = int(fdx[0])
537 fd[1] = int(fdx[1])
538 }
539 return
540}
541
542var ioSync int64
543
544func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC) }
545
546func SetNonblock(fd int, nonblocking bool) (err error) {
547 flag, err := fcntl(fd, F_GETFL, 0)
548 if err != nil {
549 return err
550 }
551 if (flag&O_NONBLOCK != 0) == nonblocking {
552 return nil
553 }
554 if nonblocking {
555 flag |= O_NONBLOCK
556 } else {
557 flag &= ^O_NONBLOCK
558 }
559 _, err = fcntl(fd, F_SETFL, flag)
560 return err
561}
562
563// Exec calls execve(2), which replaces the calling executable in the process
564// tree. argv0 should be the full path to an executable ("/bin/ls") and the
565// executable name should also be the first argument in argv (["ls", "-l"]).
566// envv are the environment variables that should be passed to the new
567// process (["USER=go", "PWD=/tmp"]).
568func Exec(argv0 string, argv []string, envv []string) error {
569 return syscall.Exec(argv0, argv, envv)
570}
571
572// Lutimes sets the access and modification times tv on path. If path refers to
573// a symlink, it is not dereferenced and the timestamps are set on the symlink.
574// If tv is nil, the access and modification times are set to the current time.
575// Otherwise tv must contain exactly 2 elements, with access time as the first
576// element and modification time as the second element.
577func Lutimes(path string, tv []Timeval) error {
578 if tv == nil {
579 return UtimesNanoAt(AT_FDCWD, path, nil, AT_SYMLINK_NOFOLLOW)
580 }
581 if len(tv) != 2 {
582 return EINVAL
583 }
584 ts := []Timespec{
585 NsecToTimespec(TimevalToNsec(tv[0])),
586 NsecToTimespec(TimevalToNsec(tv[1])),
587 }
588 return UtimesNanoAt(AT_FDCWD, path, ts, AT_SYMLINK_NOFOLLOW)
589}
590
591// emptyIovecs reports whether there are no bytes in the slice of Iovec.
592func emptyIovecs(iov []Iovec) bool {
593 for i := range iov {
594 if iov[i].Len > 0 {
595 return false
596 }
597 }
598 return true
599}
600
601// Setrlimit sets a resource limit.
602func Setrlimit(resource int, rlim *Rlimit) error {
603 // Just call the syscall version, because as of Go 1.21
604 // it will affect starting a new process.
605 return syscall.Setrlimit(resource, (*syscall.Rlimit)(rlim))
606}