aboutsummaryrefslogtreecommitdiffstats
path: root/maptools.v
diff options
context:
space:
mode:
authorLibravatar Rutger Broekhoff2024-06-27 01:56:05 +0200
committerLibravatar Rutger Broekhoff2024-06-27 01:56:05 +0200
commit4598e77a9406d8040357c943a05dd1ab939932db (patch)
treee990beaa94803da3585547f22e186e8819f6a887 /maptools.v
parent73df1945b31c0beee88cf4476df4ccd09d31403b (diff)
downloadmininix-formalization-4598e77a9406d8040357c943a05dd1ab939932db.tar.gz
mininix-formalization-4598e77a9406d8040357c943a05dd1ab939932db.zip
Tidy up project
* Write README.md * Add LICENSE * Clean up some theorems and proofs
Diffstat (limited to 'maptools.v')
-rw-r--r--maptools.v63
1 files changed, 44 insertions, 19 deletions
diff --git a/maptools.v b/maptools.v
index 2478430..ce4022a 100644
--- a/maptools.v
+++ b/maptools.v
@@ -4,8 +4,8 @@ From stdpp Require Import countable fin_maps fin_map_dom.
4(** Generic lemmas for finite maps and their domains *) 4(** Generic lemmas for finite maps and their domains *)
5 5
6Lemma map_insert_empty_lookup {A} `{FinMap K M} 6Lemma map_insert_empty_lookup {A} `{FinMap K M}
7 (i j : K) (u v : A) : 7 (i j : K) (x y : A) :
8 <[i := u]> (∅ : M A) !! j = Some v → i = j ∧ v = u. 8 <[i := x]> (∅ : M A) !! j = Some y → i = j ∧ y = x.
9Proof. 9Proof.
10 intros Hiel. 10 intros Hiel.
11 destruct (decide (i = j)). 11 destruct (decide (i = j)).
@@ -106,6 +106,32 @@ Lemma map_dom_insert_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
106 dom (delete i m1) = dom (delete i m2) ∧ i ∈ dom m2. 106 dom (delete i m1) = dom (delete i m2) ∧ i ∈ dom m2.
107Proof. set_solver. Qed. 107Proof. set_solver. Qed.
108 108
109(* Copied from stdpp and changed so that the value types
110 of m1 and m2 are decoupled *)
111Lemma map_dom_subseteq_size `{FinMapDom K M D} {A B} (m1 : M A) (m2 : M B) :
112 dom m2 ⊆ dom m1 → size m2 ≤ size m1.
113Proof.
114 revert m1. induction m2 as [|i x m2 ? IH] using map_ind; intros m1 Hdom.
115 { rewrite map_size_empty. lia. }
116 rewrite dom_insert in Hdom.
117 assert (i ∉ dom m2) by (by apply not_elem_of_dom).
118 assert (i ∈ dom m1) as [x' Hx'] % elem_of_dom by set_solver.
119 rewrite <-(insert_delete m1 i x') by done.
120 rewrite !map_size_insert_None, <-Nat.succ_le_mono
121 by (by rewrite ?lookup_delete).
122 apply IH. rewrite dom_delete. set_solver.
123Qed.
124
125Lemma map_dom_empty_subset `{Countable K} `{FinMapDom K M D} {A B} (m : M A) :
126 dom m ⊆ dom (∅ : M B) → m = ∅.
127Proof.
128 intros Hdom.
129 apply map_dom_subseteq_size in Hdom.
130 rewrite map_size_empty in Hdom.
131 inv Hdom.
132 by apply map_size_empty_inv.
133Qed.
134
109(** map_mapM *) 135(** map_mapM *)
110 136
111Definition map_mapM {M : Type → Type} `{MBind F} `{MRet F} `{FinMap K M} {A B} 137Definition map_mapM {M : Type → Type} `{MBind F} `{MRet F} `{FinMap K M} {A B}
@@ -137,11 +163,10 @@ Proof.
137Qed. 163Qed.
138 164
139Lemma map_mapM_option_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} 165Lemma map_mapM_option_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
140 (f : A → option B) (m1 : M A) (m2 m2' : M B) 166 (f : A → option B) (m1 : M A) (m2 m2' : M B) (i : K) (x : A) :
141 (i : K) (x : A) (x' : B) : 167 m1 !! i = None →
142 m1 !! i = None → 168 map_mapM f (<[i := x]>m1) = Some m2 →
143 map_mapM f (<[i := x]>m1) = Some m2 → 169 ∃ x', f x = Some x' ∧ map_mapM f m1 = Some (delete i m2).
144 ∃ x', f x = Some x' ∧ map_mapM f m1 = Some (delete i m2).
145Proof. 170Proof.
146 intros Helem HmapM. 171 intros Helem HmapM.
147 unfold map_mapM in HmapM. 172 unfold map_mapM in HmapM.
@@ -315,7 +340,7 @@ Qed.
315 340
316Lemma map_Forall2_impl_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} 341Lemma map_Forall2_impl_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
317 (R1 R2 : A → B → Prop) : 342 (R1 R2 : A → B → Prop) :
318 (∀ a b, R1 a b → R2 a b) → 343 (∀ x y, R1 x y → R2 x y) →
319 ∀ (m1 : M A) (m2 : M B), 344 ∀ (m1 : M A) (m2 : M B),
320 map_Forall2 R1 m1 m2 → map_Forall2 R2 m1 m2. 345 map_Forall2 R1 m1 m2 → map_Forall2 R2 m1 m2.
321Proof. 346Proof.
@@ -327,8 +352,8 @@ Proof.
327Qed. 352Qed.
328 353
329Lemma map_Forall2_fmap_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B C} 354Lemma map_Forall2_fmap_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B C}
330 (P : A → C → Prop) (m1 : M A) (m2 : M B) (f : B → C) : 355 (R : A → C → Prop) (m1 : M A) (m2 : M B) (f : B → C) :
331 map_Forall2 P m1 (f <$> m2) → map_Forall2 (λ l r, P l (f r)) m1 m2. 356 map_Forall2 R m1 (f <$> m2) → map_Forall2 (λ x y, R x (f y)) m1 m2.
332Proof. 357Proof.
333 intros HForall2. 358 intros HForall2.
334 unfold map_Forall2, map_relation, option_relation in *. 359 unfold map_Forall2, map_relation, option_relation in *.
@@ -355,10 +380,10 @@ Proof.
355Qed. 380Qed.
356 381
357Lemma map_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} 382Lemma map_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
358 (i : K) (x1 x2 : A) (m1 m2 : M A) : 383 (i : K) (x y : A) (m1 m2 : M A) :
359 x1 = x2 384 x = y
360 delete i m1 = delete i m2 → 385 delete i m1 = delete i m2 →
361 <[i := x1]>m1 = <[i := x2]>m2. 386 <[i := x]>m1 = <[i := y]>m2.
362Proof. 387Proof.
363 intros Heq Hdel. 388 intros Heq Hdel.
364 apply map_Forall2_eq_L. 389 apply map_Forall2_eq_L.
@@ -367,8 +392,8 @@ Proof.
367Qed. 392Qed.
368 393
369Lemma map_insert_rev_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} 394Lemma map_insert_rev_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
370 (i : K) (x1 x2 : A) (m1 m2 : M A) : 395 (m1 m2 : M A) (i : K) (x y : A) :
371 <[i := x1]>m1 = <[i := x2]>m2 → x1 = x2 ∧ delete i m1 = delete i m2. 396 <[i := x]>m1 = <[i := y]>m2 → x = y ∧ delete i m1 = delete i m2.
372Proof. 397Proof.
373 intros Heq. apply map_Forall2_eq_L in Heq. 398 intros Heq. apply map_Forall2_eq_L in Heq.
374 apply map_Forall2_insert_inv in Heq as [Heq1 Heq2]. 399 apply map_Forall2_insert_inv in Heq as [Heq1 Heq2].
@@ -376,13 +401,13 @@ Proof.
376Qed. 401Qed.
377 402
378Lemma map_insert_rev_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} 403Lemma map_insert_rev_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
379 (i : K) (x1 x2 : A) (m1 m2 : M A) : 404 (m1 m2 : M A) (i : K) (x y : A) :
380 <[i := x1]>m1 = <[i := x2]>m2 → x1 = x2. 405 <[i := x]>m1 = <[i := y]>m2 → x = y.
381Proof. apply map_insert_rev_L. Qed. 406Proof. apply map_insert_rev_L. Qed.
382 407
383Lemma map_insert_rev_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} 408Lemma map_insert_rev_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
384 (i : K) (x1 x2 : A) (m1 m2 : M A) : 409 (m1 m2 : M A) (i : K) (x y : A) :
385 <[i := x1]>m1 = <[i := x2]>m2 → delete i m1 = delete i m2. 410 <[i := x]>m1 = <[i := y]>m2 → delete i m1 = delete i m2.
386Proof. apply map_insert_rev_L. Qed. 411Proof. apply map_insert_rev_L. Qed.
387 412
388Lemma map_Forall2_alt_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} 413Lemma map_Forall2_alt_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}