diff options
author | Rutger Broekhoff | 2024-06-26 20:50:18 +0200 |
---|---|---|
committer | Rutger Broekhoff | 2024-06-26 20:50:18 +0200 |
commit | 73df1945b31c0beee88cf4476df4ccd09d31403b (patch) | |
tree | ed00db26b711442e643f38b66888a3df56e33ebd /sound.v | |
download | mininix-formalization-73df1945b31c0beee88cf4476df4ccd09d31403b.tar.gz mininix-formalization-73df1945b31c0beee88cf4476df4ccd09d31403b.zip |
Import Coq project
Diffstat (limited to 'sound.v')
-rw-r--r-- | sound.v | 630 |
1 files changed, 630 insertions, 0 deletions
@@ -0,0 +1,630 @@ | |||
1 | Require Import Coq.Strings.String. | ||
2 | From stdpp Require Import base gmap relations tactics. | ||
3 | From mininix Require Import | ||
4 | binop expr interpreter maptools matching relations sem. | ||
5 | |||
6 | Lemma strong_value_stuck sv : ¬ ∃ e, expr_from_strong_value sv --> e. | ||
7 | Proof. | ||
8 | intros []. destruct sv; inv H; inv H1; | ||
9 | simplify_option_eq; (try inv H2); inv H. | ||
10 | Qed. | ||
11 | |||
12 | Lemma strong_value_stuck_rtc sv e: | ||
13 | expr_from_strong_value sv -->* e → | ||
14 | e = expr_from_strong_value sv. | ||
15 | Proof. | ||
16 | intros. inv H. | ||
17 | - reflexivity. | ||
18 | - exfalso. apply strong_value_stuck with (sv := sv). by exists y. | ||
19 | Qed. | ||
20 | |||
21 | Lemma force__strong_value (e : expr) (v : value) : | ||
22 | X_Force e -->* v → | ||
23 | ∃ sv, v = value_from_strong_value sv. | ||
24 | Proof. | ||
25 | intros [n Hsteps] % rtc_nsteps. | ||
26 | revert e v Hsteps. | ||
27 | induction n; intros e v Hsteps; inv Hsteps. | ||
28 | inv H0. inv H2; simplify_eq/=. | ||
29 | - inv H3. | ||
30 | exists sv. | ||
31 | apply rtc_nsteps_2 in H1. | ||
32 | apply strong_value_stuck_rtc in H1. | ||
33 | unfold expr_from_strong_value, compose in H1. | ||
34 | congruence. | ||
35 | - inv H0. | ||
36 | destruct (IHn _ _ H1) as [sv Hsv]. | ||
37 | by exists sv. | ||
38 | Qed. | ||
39 | |||
40 | Lemma forall2_force__strong_values es (vs : gmap string value) : | ||
41 | map_Forall2 (λ e v', X_Force e -->* X_V v') es vs → | ||
42 | ∃ svs, vs = value_from_strong_value <$> svs. | ||
43 | Proof. | ||
44 | revert vs. | ||
45 | induction es using map_ind; intros vs HForall2. | ||
46 | - apply map_Forall2_empty_l_L in HForall2. by exists ∅. | ||
47 | - destruct (map_Forall2_destruct _ _ _ _ _ HForall2) | ||
48 | as [v [m2' [Him2' Heqvs]]]. simplify_eq/=. | ||
49 | apply map_Forall2_insert_inv_strict in HForall2 | ||
50 | as [Hstep HForall2]; try done. | ||
51 | apply IHes in HForall2 as [svs Hsvs]. simplify_eq/=. | ||
52 | apply force__strong_value in Hstep as [sv Hsv]. simplify_eq/=. | ||
53 | exists (<[i := sv]>svs). by rewrite fmap_insert. | ||
54 | Qed. | ||
55 | |||
56 | Lemma force_strong_value_forall2_impl es (svs : gmap string strong_value) : | ||
57 | map_Forall2 (λ e v', X_Force e -->* X_V v') | ||
58 | es (value_from_strong_value <$> svs) → | ||
59 | map_Forall2 (λ e sv', X_Force e -->* expr_from_strong_value sv') es svs. | ||
60 | Proof. apply map_Forall2_fmap_r_L. Qed. | ||
61 | |||
62 | Lemma force_map_fmap_union_insert (sws : gmap string strong_value) es k e sv : | ||
63 | X_Force e -->* expr_from_strong_value sv → | ||
64 | X_Force (X_V (V_Attrset (<[k := e]>es ∪ | ||
65 | (expr_from_strong_value <$> sws)))) -->* | ||
66 | X_Force (X_V (V_Attrset (<[k := expr_from_strong_value sv]>es ∪ | ||
67 | (expr_from_strong_value <$> sws)))). | ||
68 | Proof. | ||
69 | intros [n Hsteps] % rtc_nsteps. | ||
70 | revert sws es k e Hsteps. | ||
71 | induction n; intros sws es k e Hsteps. | ||
72 | - inv Hsteps. | ||
73 | - inv Hsteps. | ||
74 | inv H0. | ||
75 | inv H2. | ||
76 | + inv H3. inv H1. | ||
77 | * simplify_option_eq. unfold expr_from_strong_value, compose. | ||
78 | by rewrite H4. | ||
79 | * edestruct strong_value_stuck. exists y. done. | ||
80 | + inv H0. simplify_option_eq. | ||
81 | apply rtc_transitive | ||
82 | with (y := X_Force (X_V (V_Attrset (<[k:=E2 e2]> es ∪ | ||
83 | (expr_from_strong_value <$> sws))))). | ||
84 | * do 2 rewrite <-insert_union_l. | ||
85 | apply rtc_once. | ||
86 | eapply E_Ctx | ||
87 | with (E := λ e, X_Force (X_V (V_Attrset (<[k := E2 e]>(es ∪ | ||
88 | (expr_from_strong_value <$> sws)))))). | ||
89 | -- eapply IsCtx_Compose. | ||
90 | ++ constructor. | ||
91 | ++ eapply IsCtx_Compose | ||
92 | with (E1 := (λ e, X_V (V_Attrset (<[k := e]>(es ∪ | ||
93 | (expr_from_strong_value <$> sws)))))). | ||
94 | ** constructor. | ||
95 | ** done. | ||
96 | -- done. | ||
97 | * by apply IHn. | ||
98 | Qed. | ||
99 | |||
100 | Lemma insert_union_fmap__union_fmap_insert {A B} (f : A → B) i x | ||
101 | (m1 : gmap string B) (m2 : gmap string A) : | ||
102 | m1 !! i = None → | ||
103 | <[i := f x]>m1 ∪ (f <$> m2) = m1 ∪ (f <$> <[i := x]>m2). | ||
104 | Proof. | ||
105 | intros Him1. | ||
106 | rewrite fmap_insert. | ||
107 | rewrite <-insert_union_l. | ||
108 | by rewrite <-insert_union_r. | ||
109 | Qed. | ||
110 | |||
111 | Lemma fmap_insert_union__fmap_union_insert {A B} (f : A → B) i x | ||
112 | (m1 : gmap string A) (m2 : gmap string A) : | ||
113 | m1 !! i = None → | ||
114 | f <$> <[i := x]>m1 ∪ m2 = f <$> m1 ∪ <[i := x]>m2. | ||
115 | Proof. | ||
116 | intros Him1. | ||
117 | do 2 rewrite map_fmap_union. | ||
118 | rewrite 2 fmap_insert. | ||
119 | rewrite <-insert_union_l. | ||
120 | rewrite <-insert_union_r; try done. | ||
121 | rewrite lookup_fmap. | ||
122 | by rewrite Him1. | ||
123 | Qed. | ||
124 | |||
125 | Lemma force_map_fmap_union (sws svs : gmap string strong_value) es : | ||
126 | map_Forall2 (λ e sv, X_Force e -->* expr_from_strong_value sv) es svs → | ||
127 | X_Force (X_V (V_Attrset (es ∪ (expr_from_strong_value <$> sws)))) -->* | ||
128 | X_Force (X_V (V_Attrset (expr_from_strong_value <$> svs ∪ sws))). | ||
129 | Proof. | ||
130 | revert sws svs. | ||
131 | induction es using map_ind; intros sws svs HForall2. | ||
132 | - apply map_Forall2_empty_l_L in HForall2. | ||
133 | subst. by do 2 rewrite map_empty_union. | ||
134 | - apply map_Forall2_destruct in HForall2 as HForall2'. | ||
135 | destruct HForall2' as [sv [svs' [Him2' Heqm2']]]. subst. | ||
136 | apply map_Forall2_insert_inv_strict | ||
137 | in HForall2 as [HForall21 HForall22]; try done. | ||
138 | apply rtc_transitive with (X_Force | ||
139 | (X_V (V_Attrset (<[i := expr_from_strong_value sv]> m ∪ | ||
140 | (expr_from_strong_value <$> sws))))). | ||
141 | + by apply force_map_fmap_union_insert. | ||
142 | + rewrite insert_union_fmap__union_fmap_insert by done. | ||
143 | rewrite fmap_insert_union__fmap_union_insert by done. | ||
144 | by apply IHes. | ||
145 | Qed. | ||
146 | |||
147 | (* See 194+2024-0525-2305 for proof sketch *) | ||
148 | Lemma force_map_fmap (svs : gmap string strong_value) (es : gmap string expr) : | ||
149 | map_Forall2 (λ e sv, X_Force e -->* expr_from_strong_value sv) es svs → | ||
150 | X_Force (X_V (V_Attrset es)) -->* | ||
151 | X_Force (X_V (V_Attrset (expr_from_strong_value <$> svs))). | ||
152 | Proof. | ||
153 | pose proof (force_map_fmap_union ∅ svs es). | ||
154 | rewrite fmap_empty in H. by do 2 rewrite map_union_empty in H. | ||
155 | Qed. | ||
156 | |||
157 | Lemma id_compose_l {A B} (f : A → B) : id ∘ f = f. | ||
158 | Proof. done. Qed. | ||
159 | |||
160 | Lemma is_ctx_trans uf_ext uf_aux uf_int E1 E2 : | ||
161 | is_ctx uf_ext uf_aux E1 → | ||
162 | is_ctx uf_aux uf_int E2 → | ||
163 | is_ctx uf_ext uf_int (E1 ∘ E2). | ||
164 | Proof. | ||
165 | intros. | ||
166 | induction H. | ||
167 | - induction H0. | ||
168 | + apply IsCtx_Id. | ||
169 | + rewrite id_compose_l. | ||
170 | by apply IsCtx_Compose with uf_aux. | ||
171 | - apply IHis_ctx in H0. | ||
172 | replace (E1 ∘ E0 ∘ E2) with (E1 ∘ (E0 ∘ E2)) by done. | ||
173 | by apply IsCtx_Compose with uf_aux. | ||
174 | Qed. | ||
175 | |||
176 | Lemma ctx_mstep e e' E : | ||
177 | e -->* e' → is_ctx false false E → E e -->* E e'. | ||
178 | Proof. | ||
179 | intros. | ||
180 | induction H. | ||
181 | - apply rtc_refl. | ||
182 | - inv H. | ||
183 | pose proof (is_ctx_trans false false uf_int E E0 H0 H2). | ||
184 | eapply rtc_l. | ||
185 | + replace (E (E0 e1)) with ((E ∘ E0) e1) by done. | ||
186 | eapply E_Ctx; [apply H | apply H3]. | ||
187 | + assumption. | ||
188 | Qed. | ||
189 | |||
190 | Definition is_nonempty_ctx (uf_ext uf_int : bool) (E : expr → expr) := | ||
191 | ∃ E1 E2 uf_aux, | ||
192 | is_ctx_item uf_ext uf_aux E1 ∧ | ||
193 | is_ctx uf_aux uf_int E2 ∧ E = E1 ∘ E2. | ||
194 | |||
195 | Lemma nonempty_ctx_mstep e e' uf_int E : | ||
196 | e -->* e' → is_nonempty_ctx false uf_int E → E e -->* E e'. | ||
197 | Proof. | ||
198 | intros Hmstep Hctx. | ||
199 | destruct Hctx as [E1 [E2 [uf_aux [Hctx1 [Hctx2 Hctx3]]]]]. | ||
200 | simplify_option_eq. | ||
201 | induction Hmstep. | ||
202 | + apply rtc_refl. | ||
203 | + apply rtc_l with (y := (E1 ∘ E2) y). | ||
204 | * inv H. | ||
205 | destruct (is_ctx_uf_false_impl_true E uf_int0 H0). | ||
206 | +++ apply E_Ctx with (E := E1 ∘ (E2 ∘ E)) (uf_int := uf_int0). | ||
207 | ++ eapply IsCtx_Compose. | ||
208 | ** apply Hctx1. | ||
209 | ** eapply is_ctx_trans. | ||
210 | --- apply Hctx2. | ||
211 | --- destruct uf_int; assumption. | ||
212 | ++ assumption. | ||
213 | +++ apply E_Ctx with (E := E1 ∘ (E2 ∘ E)) (uf_int := uf_int). | ||
214 | ++ eapply IsCtx_Compose. | ||
215 | ** apply Hctx1. | ||
216 | ** eapply is_ctx_trans; simplify_option_eq. | ||
217 | --- apply Hctx2. | ||
218 | --- constructor. | ||
219 | ++ assumption. | ||
220 | * apply IHHmstep. | ||
221 | Qed. | ||
222 | |||
223 | Lemma force_strong_value (sv : strong_value) : | ||
224 | X_Force sv -->* sv. | ||
225 | Proof. | ||
226 | destruct sv using strong_value_ind'; | ||
227 | apply rtc_once; eapply E_Ctx with (E := id); constructor. | ||
228 | Qed. | ||
229 | |||
230 | Lemma id_compose_r {A B} (f : A → B) : f ∘ id = f. | ||
231 | Proof. done. Qed. | ||
232 | |||
233 | Lemma force_idempotent e (v' : value) : | ||
234 | X_Force e -->* v' → | ||
235 | X_Force (X_Force e) -->* v'. | ||
236 | Proof. | ||
237 | intros H. | ||
238 | destruct (force__strong_value _ _ H) as [sv Hsv]. subst. | ||
239 | apply rtc_transitive with (y := X_Force sv). | ||
240 | * eapply nonempty_ctx_mstep; try assumption. | ||
241 | rewrite <-id_compose_r. | ||
242 | exists X_Force, id, true. | ||
243 | repeat (split || constructor || done). | ||
244 | * apply force_strong_value. | ||
245 | Qed. | ||
246 | |||
247 | (* Conditional force *) | ||
248 | Definition cforce (uf : bool) e := if uf then X_Force e else e. | ||
249 | |||
250 | Lemma cforce_strong_value uf (sv : strong_value) : | ||
251 | cforce uf sv -->* sv. | ||
252 | Proof. destruct uf; try done. apply force_strong_value. Qed. | ||
253 | |||
254 | Theorem eval_sound_strong n uf e v' : | ||
255 | eval n uf e = Some v' → | ||
256 | cforce uf e -->* v'. | ||
257 | Proof. | ||
258 | revert uf e v'. | ||
259 | induction n; intros uf e v' Heval. | ||
260 | - discriminate. | ||
261 | - destruct e; rewrite eval_S in Heval; simplify_option_eq; try done. | ||
262 | + (* X_V *) | ||
263 | case_match; simplify_option_eq. | ||
264 | * (* V_Bool *) | ||
265 | replace (V_Bool p) with (value_from_strong_value (SV_Bool p)) by done. | ||
266 | apply cforce_strong_value. | ||
267 | * (* V_Null *) | ||
268 | replace V_Null with (value_from_strong_value SV_Null) by done. | ||
269 | apply cforce_strong_value. | ||
270 | * (* V_Int *) | ||
271 | replace (V_Int n0) with (value_from_strong_value (SV_Int n0)) by done. | ||
272 | apply cforce_strong_value. | ||
273 | * (* V_Str *) | ||
274 | replace (V_Str s) with (value_from_strong_value (SV_Str s)) by done. | ||
275 | apply cforce_strong_value. | ||
276 | * (* V_Fn *) | ||
277 | replace (V_Fn x e) with (value_from_strong_value (SV_Fn x e)) by done. | ||
278 | apply cforce_strong_value. | ||
279 | * (* V_AttrsetFn *) | ||
280 | replace (V_AttrsetFn m e) | ||
281 | with (value_from_strong_value (SV_AttrsetFn m e)) by done. | ||
282 | apply cforce_strong_value. | ||
283 | * (* V_Attrset *) | ||
284 | case_match; simplify_option_eq; try done. | ||
285 | apply map_mapM_Some_L in Heqo. simplify_option_eq. | ||
286 | eapply map_Forall2_impl_L in Heqo. 2: { intros a b. apply IHn. } | ||
287 | destruct (forall2_force__strong_values _ _ Heqo). subst. | ||
288 | apply force_strong_value_forall2_impl in Heqo. | ||
289 | rewrite <-map_fmap_compose. fold expr_from_strong_value. | ||
290 | apply force_map_fmap in Heqo. | ||
291 | apply rtc_transitive | ||
292 | with (y := X_Force (X_V (V_Attrset (expr_from_strong_value <$> x)))); | ||
293 | try done. | ||
294 | apply rtc_once. | ||
295 | eapply E_Ctx with (E := id); [constructor|]. | ||
296 | replace (X_V (V_Attrset (expr_from_strong_value <$> x))) | ||
297 | with (expr_from_strong_value (SV_Attrset x)) by reflexivity. | ||
298 | apply E_Force. | ||
299 | + (* X_Attrset *) | ||
300 | apply IHn in Heval. | ||
301 | apply rtc_transitive with (y := cforce uf (V_Attrset (rec_subst bs))); | ||
302 | [|done]. | ||
303 | destruct uf; simplify_eq/=. | ||
304 | -- eapply nonempty_ctx_mstep with (E := X_Force). | ||
305 | ++ by eapply rtc_once, E_Ctx with (E := id). | ||
306 | ++ by exists X_Force, id, true. | ||
307 | -- apply rtc_once. by eapply E_Ctx with (E := id). | ||
308 | + (* X_LetBinding *) | ||
309 | apply IHn in Heval. | ||
310 | apply rtc_transitive | ||
311 | with (y := cforce uf (subst (closed (rec_subst bs)) e)); [|done]. | ||
312 | destruct uf; simplify_eq/=. | ||
313 | -- eapply nonempty_ctx_mstep with (E := X_Force). | ||
314 | ++ by eapply rtc_once, E_Ctx with (E := id). | ||
315 | ++ by exists X_Force, id, true. | ||
316 | -- apply rtc_once. by eapply E_Ctx with (E := id). | ||
317 | + (* X_Select *) | ||
318 | case_match. simplify_option_eq. | ||
319 | apply IHn in Heqo. simplify_eq/=. | ||
320 | apply rtc_transitive with (y := cforce uf | ||
321 | (X_Select (V_Attrset H0) (Ne_Cons head tail))). | ||
322 | -- apply ctx_mstep | ||
323 | with (E := cforce uf ∘ (λ e, X_Select e (Ne_Cons head tail))). | ||
324 | ++ done. | ||
325 | ++ destruct uf; simplify_option_eq. | ||
326 | ** eapply IsCtx_Compose; [constructor | by apply is_ctx_once]. | ||
327 | ** apply is_ctx_once. unfold compose. by simpl. | ||
328 | -- case_match; apply IHn in Heval. | ||
329 | ++ apply rtc_transitive with (y := cforce uf H); [|done]. | ||
330 | apply rtc_once. | ||
331 | eapply E_Ctx. | ||
332 | ** destruct uf; [by apply is_ctx_once | done]. | ||
333 | ** by replace H0 with (<[head := H]>H0); [|apply insert_id]. | ||
334 | ++ apply rtc_transitive | ||
335 | with (y := cforce uf (X_Select H (Ne_Cons s l))); [|done]. | ||
336 | ** eapply rtc_l. | ||
337 | --- eapply E_Ctx. | ||
338 | +++ destruct uf; [by apply is_ctx_once | done]. | ||
339 | +++ replace (Ne_Cons head (s :: l)) | ||
340 | with (nonempty_cons head (Ne_Cons s l)) by done. | ||
341 | apply E_MSelect. | ||
342 | --- eapply rtc_once. | ||
343 | eapply E_Ctx | ||
344 | with (E := cforce uf ∘ (λ e, X_Select e (Ne_Cons s l))). | ||
345 | +++ destruct uf. | ||
346 | *** eapply IsCtx_Compose; [done | by apply is_ctx_once]. | ||
347 | *** apply is_ctx_once. unfold compose. by simpl. | ||
348 | +++ by replace H0 | ||
349 | with (<[head := H]>H0); [|apply insert_id]. | ||
350 | + (* X_SelectOr *) | ||
351 | case_match. simplify_option_eq. | ||
352 | apply IHn in Heqo. simplify_eq/=. | ||
353 | apply rtc_transitive | ||
354 | with (y := cforce uf (X_SelectOr (V_Attrset H0) (Ne_Cons head tail) e2)). | ||
355 | -- apply ctx_mstep | ||
356 | with (E := cforce uf ∘ (λ e, X_SelectOr e (Ne_Cons head tail) e2)). | ||
357 | ++ done. | ||
358 | ++ destruct uf; simplify_option_eq. | ||
359 | ** eapply IsCtx_Compose; [constructor | by apply is_ctx_once]. | ||
360 | ** apply is_ctx_once. unfold compose. by simpl. | ||
361 | -- case_match; try case_match; apply IHn in Heval. | ||
362 | ++ apply rtc_transitive with (y := cforce uf e); [|done]. | ||
363 | eapply rtc_l. | ||
364 | ** eapply E_Ctx. | ||
365 | --- destruct uf; [by apply is_ctx_once | done]. | ||
366 | --- replace (Ne_Cons head []) with (nonempty_singleton head) | ||
367 | by done. constructor. | ||
368 | ** eapply rtc_l. | ||
369 | --- eapply E_Ctx with (E := cforce uf ∘ (λ e1, X_Cond e1 _ _)). | ||
370 | +++ destruct uf; simplify_option_eq. | ||
371 | *** eapply IsCtx_Compose; | ||
372 | [constructor | by apply is_ctx_once]. | ||
373 | *** apply is_ctx_once. unfold compose. by simpl. | ||
374 | +++ by apply E_OpHasAttrTrue. | ||
375 | --- simplify_eq/=. | ||
376 | eapply rtc_l. | ||
377 | +++ eapply E_Ctx with (E := cforce uf). | ||
378 | *** destruct uf; [by apply is_ctx_once | done]. | ||
379 | *** apply E_IfTrue. | ||
380 | +++ eapply rtc_once. | ||
381 | eapply E_Ctx with (E := cforce uf). | ||
382 | *** destruct uf; [by apply is_ctx_once | done]. | ||
383 | *** by replace H0 with (<[head := e]>H0); | ||
384 | [|apply insert_id]. | ||
385 | ++ apply rtc_transitive | ||
386 | with (y := cforce uf (X_SelectOr e (Ne_Cons s l) e2)); [|done]. | ||
387 | eapply rtc_l. | ||
388 | ** eapply E_Ctx. | ||
389 | --- destruct uf; [by apply is_ctx_once | done]. | ||
390 | --- replace (Ne_Cons head (s :: l)) | ||
391 | with (nonempty_cons head (Ne_Cons s l)) by done. | ||
392 | constructor. | ||
393 | ** eapply rtc_l. | ||
394 | --- eapply E_Ctx with (E := cforce uf ∘ (λ e1, X_Cond e1 _ _)). | ||
395 | +++ destruct uf; simplify_option_eq. | ||
396 | *** eapply IsCtx_Compose; | ||
397 | [constructor | by apply is_ctx_once]. | ||
398 | *** apply is_ctx_once. unfold compose. by simpl. | ||
399 | +++ by apply E_OpHasAttrTrue. | ||
400 | --- simplify_eq/=. | ||
401 | eapply rtc_l. | ||
402 | +++ eapply E_Ctx with (E := cforce uf). | ||
403 | *** destruct uf; [by apply is_ctx_once | done]. | ||
404 | *** apply E_IfTrue. | ||
405 | +++ eapply rtc_once. | ||
406 | eapply E_Ctx | ||
407 | with (E := cforce uf ∘ λ e1, | ||
408 | X_SelectOr e1 (Ne_Cons s l) e2). | ||
409 | *** destruct uf; simplify_option_eq. | ||
410 | ---- eapply IsCtx_Compose; | ||
411 | [constructor | by apply is_ctx_once]. | ||
412 | ---- apply is_ctx_once. unfold compose. by simpl. | ||
413 | *** by replace H0 with (<[head := e]>H0); | ||
414 | [|apply insert_id]. | ||
415 | ++ apply rtc_transitive with (y := cforce uf e2); [|done]. | ||
416 | destruct tail. | ||
417 | ** eapply rtc_l. | ||
418 | --- eapply E_Ctx. | ||
419 | +++ destruct uf; [by apply is_ctx_once | done]. | ||
420 | +++ replace (Ne_Cons head []) | ||
421 | with (nonempty_singleton head) by done. | ||
422 | constructor. | ||
423 | --- eapply rtc_l. | ||
424 | +++ eapply E_Ctx | ||
425 | with (E := cforce uf ∘ (λ e1, X_Cond e1 _ _)). | ||
426 | *** destruct uf; simplify_option_eq. | ||
427 | ---- eapply IsCtx_Compose; | ||
428 | [constructor | by apply is_ctx_once]. | ||
429 | ---- apply is_ctx_once. unfold compose. by simpl. | ||
430 | *** by apply E_OpHasAttrFalse. | ||
431 | +++ simplify_eq/=. | ||
432 | eapply rtc_once. | ||
433 | eapply E_Ctx with (E := cforce uf). | ||
434 | *** destruct uf; [by apply is_ctx_once | done]. | ||
435 | *** apply E_IfFalse. | ||
436 | ** eapply rtc_l. | ||
437 | --- eapply E_Ctx. | ||
438 | +++ destruct uf; [by apply is_ctx_once | done]. | ||
439 | +++ replace (Ne_Cons head (s :: tail)) | ||
440 | with (nonempty_cons head (Ne_Cons s tail)) by done. | ||
441 | constructor. | ||
442 | --- eapply rtc_l. | ||
443 | +++ eapply E_Ctx | ||
444 | with (E := cforce uf ∘ (λ e1, X_Cond e1 _ _)). | ||
445 | *** destruct uf; simplify_option_eq. | ||
446 | ---- eapply IsCtx_Compose; | ||
447 | [constructor | by apply is_ctx_once]. | ||
448 | ---- apply is_ctx_once. unfold compose. by simpl. | ||
449 | *** by apply E_OpHasAttrFalse. | ||
450 | +++ simplify_eq/=. | ||
451 | eapply rtc_once. | ||
452 | eapply E_Ctx with (E := cforce uf). | ||
453 | *** destruct uf; [by apply is_ctx_once | done]. | ||
454 | *** apply E_IfFalse. | ||
455 | + (* X_Apply *) | ||
456 | case_match; simplify_option_eq; apply IHn in Heqo, Heval. | ||
457 | * (* Basic lambda abstraction *) | ||
458 | apply rtc_transitive with (y := cforce uf (X_Apply (V_Fn x e) e2)). | ||
459 | -- apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Apply e1 e2); | ||
460 | [done|]. | ||
461 | destruct uf. | ||
462 | ++ by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
463 | ++ apply is_ctx_once. unfold compose. by simpl. | ||
464 | -- apply rtc_transitive | ||
465 | with (y := cforce uf (subst {[x := X_Closed e2]} e)); [|done]. | ||
466 | eapply rtc_once. | ||
467 | eapply E_Ctx. | ||
468 | ++ destruct uf; [by apply is_ctx_once | done]. | ||
469 | ++ by constructor. | ||
470 | * (* Pattern-matching function *) | ||
471 | apply rtc_transitive | ||
472 | with (y := cforce uf (X_Apply (V_AttrsetFn m e) e2)). | ||
473 | -- apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Apply e1 e2); | ||
474 | [done|]. | ||
475 | destruct uf. | ||
476 | ++ by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
477 | ++ apply is_ctx_once. unfold compose. by simpl. | ||
478 | -- apply rtc_transitive | ||
479 | with (y := cforce uf (X_Apply (V_AttrsetFn m e) (V_Attrset H0))). | ||
480 | ++ apply ctx_mstep | ||
481 | with (E := cforce uf ∘ λ e2, X_Apply (V_AttrsetFn m e) e2). | ||
482 | ** by apply IHn in Heqo0. | ||
483 | ** destruct uf. | ||
484 | --- by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
485 | --- apply is_ctx_once. unfold compose. by simpl. | ||
486 | ++ apply rtc_transitive with (y := cforce uf (X_LetBinding H e)); | ||
487 | [|done]. | ||
488 | eapply rtc_once. | ||
489 | eapply E_Ctx. | ||
490 | ** destruct uf; [by apply is_ctx_once | done]. | ||
491 | ** apply matches_sound in Heqo1. by constructor. | ||
492 | * (* __functor *) | ||
493 | apply rtc_transitive with (y := cforce uf (X_Apply (V_Attrset bs) e2)). | ||
494 | -- apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Apply e1 e2); | ||
495 | [done|]. | ||
496 | destruct uf. | ||
497 | ++ by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
498 | ++ apply is_ctx_once. unfold compose. by simpl. | ||
499 | -- apply rtc_transitive | ||
500 | with (y := cforce uf (X_Apply (X_Apply H (V_Attrset bs)) e2)); | ||
501 | [|done]. | ||
502 | eapply rtc_once. | ||
503 | eapply E_Ctx. | ||
504 | ++ destruct uf; [by apply is_ctx_once | done]. | ||
505 | ++ by replace bs with (<["__functor" := H]>bs); [|apply insert_id]. | ||
506 | + (* X_Cond *) | ||
507 | simplify_option_eq. | ||
508 | apply IHn in Heqo, Heval. | ||
509 | apply rtc_transitive with (y := cforce uf (X_Cond (V_Bool H0) e2 e3)). | ||
510 | * apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Cond e1 e2 e3); [done|]. | ||
511 | destruct uf. | ||
512 | -- by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
513 | -- apply is_ctx_once. unfold compose. by simpl. | ||
514 | * destruct H0; eapply rtc_l; try done; eapply E_Ctx; try done; | ||
515 | by destruct uf; [apply is_ctx_once|]. | ||
516 | + (* X_Incl *) | ||
517 | apply IHn in Heqo. | ||
518 | apply rtc_transitive with (y := cforce uf (X_Incl H e2)). | ||
519 | * apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Incl e1 e2). | ||
520 | -- done. | ||
521 | -- destruct uf. | ||
522 | ++ eapply IsCtx_Compose; [done | by apply is_ctx_once]. | ||
523 | ++ unfold compose. apply is_ctx_once. by simpl. | ||
524 | * destruct (decide (attrset H)). | ||
525 | -- destruct H; inv a. simplify_option_eq. apply IHn in Heval. | ||
526 | eapply rtc_l; [|done]. | ||
527 | eapply E_Ctx. | ||
528 | ++ destruct uf; [by apply is_ctx_once | done]. | ||
529 | ++ apply E_With. | ||
530 | -- destruct H; | ||
531 | try (eapply rtc_l; | ||
532 | [ eapply E_Ctx; | ||
533 | [ destruct uf; [by apply is_ctx_once | done] | ||
534 | | by apply E_WithNoAttrset ] | ||
535 | | by apply IHn in Heval ]). | ||
536 | destruct n0. by exists bs. | ||
537 | + (* X_Assert *) | ||
538 | apply IHn in Heqo. | ||
539 | apply rtc_transitive with (y := cforce uf (X_Assert H e2)). | ||
540 | * apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Assert e1 e2); [done|]. | ||
541 | destruct uf. | ||
542 | -- by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
543 | -- unfold compose. apply is_ctx_once. by simpl. | ||
544 | * destruct H; try discriminate. destruct p; try discriminate. | ||
545 | apply IHn in Heval. eapply rtc_l; [|done]. | ||
546 | eapply E_Ctx; [|done]. | ||
547 | by destruct uf; [apply is_ctx_once|]. | ||
548 | + (* X_Binop *) | ||
549 | apply IHn in Heqo, Heqo0. | ||
550 | apply rtc_transitive with (y := cforce uf (X_Op op (X_V H) e2)). | ||
551 | * apply ctx_mstep with (E := cforce uf ∘ λ e1, X_Op op e1 e2). | ||
552 | -- done. | ||
553 | -- destruct uf. | ||
554 | ++ eapply IsCtx_Compose; [done | by apply is_ctx_once]. | ||
555 | ++ unfold compose. apply is_ctx_once. by simpl. | ||
556 | * apply rtc_transitive with (y := cforce uf (X_Op op (X_V H) (X_V H0))). | ||
557 | -- apply ctx_mstep with (E := cforce uf ∘ λ e2, X_Op op (X_V H) e2). | ||
558 | ++ done. | ||
559 | ++ destruct uf. | ||
560 | ** eapply IsCtx_Compose; [done | by apply is_ctx_once]. | ||
561 | ** unfold compose. apply is_ctx_once. by simpl. | ||
562 | -- eapply rtc_l. | ||
563 | ++ eapply E_Ctx with (E := cforce uf). | ||
564 | ** destruct uf; [by apply is_ctx_once | done]. | ||
565 | ** apply E_Op. by apply binop_eval_sound. | ||
566 | ++ by apply IHn. | ||
567 | + (* X_HasAttr *) | ||
568 | apply IHn in Heqo. | ||
569 | apply rtc_transitive with (y := cforce uf (X_HasAttr H x)). | ||
570 | * apply ctx_mstep with (E := cforce uf ∘ λ e, X_HasAttr e x); [done|]. | ||
571 | destruct uf. | ||
572 | -- by eapply IsCtx_Compose; [|apply is_ctx_once]. | ||
573 | -- unfold compose. apply is_ctx_once. by simpl. | ||
574 | * destruct (decide (attrset H)). | ||
575 | -- case_match; inv a. simplify_option_eq. | ||
576 | apply rtc_transitive | ||
577 | with (y := cforce uf (bool_decide (is_Some (x0 !! x)))). | ||
578 | ++ apply rtc_once. eapply E_Ctx. | ||
579 | ** destruct uf; [by apply is_ctx_once | done]. | ||
580 | ** destruct (decide (is_Some (x0 !! x))). | ||
581 | --- rewrite bool_decide_true by done. by constructor. | ||
582 | --- rewrite bool_decide_false by done. constructor. | ||
583 | by apply eq_None_not_Some in n0. | ||
584 | ++ destruct uf; [|done]. | ||
585 | apply rtc_once. simpl. | ||
586 | replace (V_Bool (bool_decide (is_Some (x0 !! x)))) | ||
587 | with (value_from_strong_value | ||
588 | (SV_Bool (bool_decide (is_Some (x0 !! x))))) | ||
589 | by done. | ||
590 | by eapply E_Ctx with (E := id). | ||
591 | -- apply rtc_transitive with (y := cforce uf false). | ||
592 | ++ apply rtc_once. eapply E_Ctx. | ||
593 | ** destruct uf; [by apply is_ctx_once | done]. | ||
594 | ** by constructor. | ||
595 | ++ assert (Hforce : cforce true false -->* false). | ||
596 | { apply rtc_once. | ||
597 | simpl. | ||
598 | replace (V_Bool false) | ||
599 | with (value_from_strong_value (SV_Bool false)) by done. | ||
600 | eapply E_Ctx with (E := id); done. } | ||
601 | destruct H; try (by destruct uf; [apply Hforce | done]). | ||
602 | exfalso. apply n0. by exists bs. | ||
603 | + (* X_Force *) | ||
604 | apply IHn in Heval. clear IHn n. | ||
605 | destruct uf; try done. simplify_eq/=. | ||
606 | by apply force_idempotent. | ||
607 | + (* X_Closed *) | ||
608 | apply IHn in Heval. | ||
609 | eapply rtc_l; [|done]. | ||
610 | eapply E_Ctx; [|done]. | ||
611 | * by destruct uf; [apply is_ctx_once|]. | ||
612 | + (* X_Placeholder *) | ||
613 | apply IHn in Heval. clear IHn n. | ||
614 | destruct uf; simplify_eq/=; eapply rtc_l; try done. | ||
615 | -- eapply E_Ctx with (E := X_Force); [by apply is_ctx_once | done]. | ||
616 | -- by eapply E_Ctx with (E := id). | ||
617 | Qed. | ||
618 | |||
619 | Lemma value_stuck v : ¬ ∃ e', X_V v --> e'. | ||
620 | Proof. | ||
621 | induction v; intros [e' He']; inversion He'; | ||
622 | subst; (inv H0; [inv H1 | inv H2]). | ||
623 | Qed. | ||
624 | |||
625 | Theorem eval_sound_weak e v' n : eval n false e = Some v' → is_nf_of step e v'. | ||
626 | Proof. | ||
627 | intros Heval. | ||
628 | pose proof (eval_sound_strong _ _ _ _ Heval). | ||
629 | split; [done | apply value_stuck]. | ||
630 | Qed. | ||