diff options
Diffstat (limited to 'correct.v')
-rw-r--r-- | correct.v | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/correct.v b/correct.v new file mode 100644 index 0000000..89f5894 --- /dev/null +++ b/correct.v | |||
@@ -0,0 +1,299 @@ | |||
1 | Require Import Coq.Strings.String. | ||
2 | From stdpp Require Import gmap. | ||
3 | From mininix Require Import | ||
4 | expr relations sem interpreter complete sound shared. | ||
5 | |||
6 | Theorem correct e v' : (∃ n, eval n false e = Some v') ↔ e -->* v'. | ||
7 | Proof. | ||
8 | split. | ||
9 | - intros [n Heval]. by apply (eval_sound_strong n false). | ||
10 | - intros Heval. by apply eval_complete. | ||
11 | Qed. | ||
12 | |||
13 | (* Top-level program reduction/evaluation: | ||
14 | we make the prelude available here. *) | ||
15 | |||
16 | Definition with_prelude (e : expr) : expr := | ||
17 | subst (closed prelude) e. | ||
18 | |||
19 | Definition tl_reds (e e' : expr) := | ||
20 | with_prelude e -->* e'. | ||
21 | |||
22 | Definition tl_eval (n : nat) (e : expr) : option value := | ||
23 | eval n false (subst (closed prelude) e). | ||
24 | |||
25 | Definition tl_evals e e' := ∃ n, tl_eval n e = Some e'. | ||
26 | |||
27 | (* Macros *) | ||
28 | |||
29 | Definition μ_neq e1 e2 := X_Cond (X_Op O_Eq e1 e2) false true. | ||
30 | Definition μ_or e1 e2 := X_Cond e1 true e2. | ||
31 | Definition μ_and e1 e2 := X_Cond e1 e2 false. | ||
32 | Definition μ_impl e1 e2 := X_Cond e1 e2 true. | ||
33 | Definition μ_neg e := X_Cond e false true. | ||
34 | |||
35 | Definition μ_le n m := μ_or (X_Op O_Eq n m) (X_Op O_Lt n m). | ||
36 | Definition μ_gt n m := X_Op O_Lt m n. | ||
37 | Definition μ_ge n m := μ_or (X_Op O_Eq n m) (μ_gt n m). | ||
38 | |||
39 | (* Tests/examples *) | ||
40 | |||
41 | Definition ex1 := X_LetBinding {[ "a" := B_Rec 1%Z ]} "a". | ||
42 | |||
43 | (* [let a = 1; in a] gives 1 *) | ||
44 | Theorem ex1_step : tl_reds ex1 1%Z. | ||
45 | Proof. | ||
46 | unfold ex1. | ||
47 | eapply rtc_l. | ||
48 | - by eapply E_Ctx with (E := id). | ||
49 | - simplify_option_eq. | ||
50 | eapply rtc_once. | ||
51 | by eapply E_Ctx with (E := id). | ||
52 | Qed. | ||
53 | |||
54 | Example ex1_eval : tl_evals ex1 (V_Int 1). | ||
55 | Proof. by exists 3. Qed. | ||
56 | |||
57 | (* Definition ex2 := <{ let a = 1 in with { a = 2 }; a }>. *) | ||
58 | Definition ex2 := X_LetBinding {[ "a" := B_Rec 1%Z ]} | ||
59 | (X_Incl (V_Attrset {[ "a" := X_V 2%Z ]}) "a"). | ||
60 | |||
61 | (* [let a = 1; in with { a = 2; }; a] gives 1 *) | ||
62 | Theorem ex2_step : tl_reds ex2 1%Z. | ||
63 | Proof. | ||
64 | unfold ex2. | ||
65 | eapply rtc_l. | ||
66 | - by eapply E_Ctx with (E := id). | ||
67 | - simplify_option_eq. | ||
68 | eapply rtc_l. | ||
69 | + by eapply E_Ctx with (E := id). | ||
70 | + simpl. eapply rtc_once. | ||
71 | by eapply E_Ctx with (E := id). | ||
72 | Qed. | ||
73 | |||
74 | Example ex2_eval : tl_evals ex2 (V_Int 1). | ||
75 | Proof. by exists 4. Qed. | ||
76 | |||
77 | (* [with { a = 1; }; with { a = 2; }; a] gives 2 *) | ||
78 | Definition ex3 := | ||
79 | X_Incl (V_Attrset {[ "a" := X_V 1%Z ]}) | ||
80 | (X_Incl (V_Attrset {[ "a" := X_V 2%Z ]}) "a"). | ||
81 | |||
82 | Theorem ex3_step : tl_reds ex3 2%Z. | ||
83 | Proof. | ||
84 | unfold ex3. | ||
85 | eapply rtc_l. | ||
86 | - eapply E_Ctx with (E := id); [done | apply E_With]. | ||
87 | - simpl. eapply rtc_l. | ||
88 | + by eapply E_Ctx with (E := id). | ||
89 | + simplify_option_eq. | ||
90 | eapply rtc_once. | ||
91 | by eapply E_Ctx with (E := id). | ||
92 | Qed. | ||
93 | |||
94 | Example ex3_eval : tl_evals ex3 (V_Int 2). | ||
95 | Proof. by exists 4. Qed. | ||
96 | |||
97 | (* [({ x, y ? x } : y) { x = 1; }] gives 1 *) | ||
98 | Definition ex4 := | ||
99 | X_Apply | ||
100 | (V_AttrsetFn | ||
101 | (M_Matcher | ||
102 | {[ "x" := M_Mandatory; | ||
103 | "y" := M_Optional "x" | ||
104 | ]} | ||
105 | true) | ||
106 | "y") | ||
107 | (V_Attrset {[ "x" := X_V 1%Z ]}). | ||
108 | |||
109 | Example ex4_eval : tl_evals ex4 (V_Int 1). | ||
110 | Proof. by exists 7. Qed. | ||
111 | |||
112 | (* [({ x ? y, y ? x } : y) { x = 1; }] gives 1 *) | ||
113 | Definition ex5 := | ||
114 | X_Apply | ||
115 | (V_AttrsetFn | ||
116 | (M_Matcher | ||
117 | {[ "x" := M_Optional "y"; | ||
118 | "y" := M_Optional "x" | ||
119 | ]} | ||
120 | true) | ||
121 | "y") | ||
122 | (V_Attrset {[ "x" := X_V 1%Z ]}). | ||
123 | |||
124 | Example ex5_eval : tl_evals ex5 (V_Int 1). | ||
125 | Proof. by exists 7. Qed. | ||
126 | |||
127 | (* [let binToString = n: | ||
128 | if n == 0 | ||
129 | then "0" | ||
130 | else if n == 1 | ||
131 | then "1" | ||
132 | else binToString (n / 2) + (if isEven n then "0" else "1"); | ||
133 | isEven = n: n != 1 && (n = 0 || isEven (n - 2)); | ||
134 | test = { x, y ? attrs.x, ... } @ attrs: | ||
135 | "x: " + x + ", y: " + y + ", z: " + attrs.z or "(no z)" | ||
136 | in test { x = binToString 6; }] gives "x: 110, y: 110, z: (no z)" *) | ||
137 | Definition ex6 := | ||
138 | X_LetBinding | ||
139 | {[ "binToString" := B_Rec $ V_Fn "n" $ | ||
140 | X_Cond | ||
141 | (X_Op O_Eq "n" 0%Z) | ||
142 | (V_Str "0") | ||
143 | (X_Cond | ||
144 | (X_Op O_Eq "n" 1%Z) | ||
145 | (V_Str "1") | ||
146 | (X_Op O_Plus | ||
147 | (X_Apply | ||
148 | "binToString" | ||
149 | (X_Op O_Div "n" 2%Z)) | ||
150 | (X_Cond | ||
151 | (X_Apply "isEven" "n") | ||
152 | (V_Str "0") | ||
153 | (V_Str "1")))); | ||
154 | "isEven" := B_Rec $ V_Fn "n" $ | ||
155 | μ_and | ||
156 | (μ_neq "n" 1%Z) | ||
157 | (μ_or | ||
158 | (X_Op O_Eq "n" 0%Z) | ||
159 | (X_Apply "isEven" (X_Op O_Min "n" 2%Z))); | ||
160 | "test" := B_Rec $ V_Fn "attrs" $ | ||
161 | X_Apply | ||
162 | (V_AttrsetFn | ||
163 | (M_Matcher | ||
164 | {[ "x" := M_Mandatory; | ||
165 | "y" := M_Optional | ||
166 | (X_Select "attrs" | ||
167 | (nonempty_singleton "x")) | ||
168 | ]} false) | ||
169 | (X_Op O_Plus | ||
170 | (X_Op O_Plus | ||
171 | (X_Op O_Plus | ||
172 | (X_Op O_Plus | ||
173 | (X_Op O_Plus | ||
174 | (V_Str "x: ") | ||
175 | "x") | ||
176 | (V_Str ", y: ")) | ||
177 | "y") | ||
178 | (V_Str ", z: ")) | ||
179 | (X_SelectOr | ||
180 | "attrs" | ||
181 | (nonempty_singleton "z") | ||
182 | (V_Str "(no z)")))) | ||
183 | "attrs" | ||
184 | ]} | ||
185 | (X_Apply "test" $ V_Attrset | ||
186 | {[ "x" := X_Apply "binToString" 6%Z ]}). | ||
187 | |||
188 | Example ex6_eval : tl_evals ex6 (V_Str "x: 110, y: 110, z: (no z)"). | ||
189 | Proof. by exists 37. Qed. | ||
190 | |||
191 | (* Important check of if placeholders work correctly: | ||
192 | [with { x = 1; }; let foo = y: let x = 2; in y; foo x] | ||
193 | gives 1 *) | ||
194 | Definition ex7 := X_Incl | ||
195 | (V_Attrset {[ "x" := X_V 1%Z ]}) | ||
196 | (X_LetBinding | ||
197 | {[ "foo" := B_Rec $ V_Fn "y" $ | ||
198 | X_LetBinding {[ "x" := B_Rec 2%Z ]} "y" | ||
199 | ]} | ||
200 | (X_Apply "foo" "x")). | ||
201 | |||
202 | Example ex7_eval : tl_evals ex7 (V_Int 1). | ||
203 | Proof. by exists 7. Qed. | ||
204 | |||
205 | Definition ex8 := | ||
206 | X_LetBinding | ||
207 | {[ "divide" := B_Rec $ V_Fn "a" $ V_Fn "b" $ | ||
208 | X_Assert | ||
209 | (μ_and (μ_ge "a" 0%Z) (μ_gt "b" 0%Z)) | ||
210 | (X_Cond | ||
211 | (X_Op O_Lt "a" "b") | ||
212 | 0 | ||
213 | (X_Op | ||
214 | O_Plus | ||
215 | (X_Apply | ||
216 | (X_Apply | ||
217 | "divide" | ||
218 | (X_Op O_Min "a" "b")) | ||
219 | "b") | ||
220 | 1)); | ||
221 | "divider" := B_Rec $ X_Attrset | ||
222 | {[ "__functor" := B_Nonrec $ V_Fn "self" $ V_Fn "x" $ | ||
223 | X_Op | ||
224 | O_Upd | ||
225 | "self" | ||
226 | (X_Attrset | ||
227 | {[ "value" := B_Nonrec $ | ||
228 | X_Apply | ||
229 | (X_Apply | ||
230 | "divide" | ||
231 | (X_Select "self" $ nonempty_singleton "value")) | ||
232 | "x" | ||
233 | ]}) | ||
234 | ]}; | ||
235 | "mkDivider" := B_Rec $ V_Fn "value" $ | ||
236 | X_Op | ||
237 | O_Upd | ||
238 | "divider" | ||
239 | (X_Attrset {[ "value" := B_Nonrec "value" ]}) | ||
240 | ]}%Z | ||
241 | (X_Select | ||
242 | (X_Apply (X_Apply (X_Apply "mkDivider" 100) 5) 4) | ||
243 | (nonempty_singleton "value"))%Z. | ||
244 | |||
245 | Example ex8_eval : tl_evals ex8 (V_Int 5). | ||
246 | Proof. by exists 170. Qed. | ||
247 | |||
248 | Example ex9 := | ||
249 | X_Apply | ||
250 | (X_Apply | ||
251 | (V_Attrset | ||
252 | {[ "__functor" := X_V $ V_Fn "self" $ V_Fn "f" $ | ||
253 | X_Apply "f" (X_Apply "self" "f") | ||
254 | ]}) | ||
255 | (V_Fn "go" $ V_Fn "n" $ | ||
256 | X_Cond | ||
257 | (μ_le "n" 1) | ||
258 | "n" | ||
259 | (X_Op | ||
260 | O_Plus | ||
261 | (X_Apply "go" (X_Op O_Min "n" 1)) | ||
262 | (X_Apply "go" (X_Op O_Min "n" 2)))))%Z | ||
263 | 15%Z. | ||
264 | |||
265 | Example ex9_eval : tl_evals ex9 (V_Int 610). | ||
266 | Proof. by exists 78. Qed. | ||
267 | |||
268 | Example ex10 := | ||
269 | X_LetBinding | ||
270 | {[ "true" := B_Rec 42 ]}%Z | ||
271 | (X_Op O_Eq "true" 42)%Z. | ||
272 | |||
273 | Example ex10_eval : tl_evals ex10 (V_Bool true). | ||
274 | Proof. by exists 4. Qed. | ||
275 | |||
276 | Definition ex11 := | ||
277 | X_LetBinding | ||
278 | {[ "x" := B_Rec "y" ]}%Z | ||
279 | (X_LetBinding {[ "y" := B_Rec 10 ]} "x")%Z. | ||
280 | |||
281 | Example ex11_eval : tl_eval 1000 ex11 = None. | ||
282 | Proof. done. Qed. | ||
283 | |||
284 | Definition ex12 := | ||
285 | X_LetBinding | ||
286 | {[ "pkgs" := B_Rec $ V_Attrset | ||
287 | {[ "x" := X_Incl (V_Attrset {[ "y" := X_V 1%Z ]}) "y" ]} | ||
288 | ]} | ||
289 | (X_Select | ||
290 | (X_Attrset | ||
291 | {[ "x" := B_Rec $ X_Select "pkgs" (nonempty_singleton "x"); | ||
292 | "y" := B_Rec 3%Z | ||
293 | ]}) | ||
294 | (nonempty_singleton "x")). | ||
295 | |||
296 | Example ex12_eval : tl_eval 1000 ex12 = Some (V_Int 1). | ||
297 | Proof. done. Qed. | ||
298 | |||
299 | (* Aio, quantitas magna frumentorum est. *) | ||