diff options
Diffstat (limited to 'maptools.v')
-rw-r--r-- | maptools.v | 476 |
1 files changed, 476 insertions, 0 deletions
diff --git a/maptools.v b/maptools.v new file mode 100644 index 0000000..2478430 --- /dev/null +++ b/maptools.v | |||
@@ -0,0 +1,476 @@ | |||
1 | Require Import Coq.Strings.String. | ||
2 | From stdpp Require Import countable fin_maps fin_map_dom. | ||
3 | |||
4 | (** Generic lemmas for finite maps and their domains *) | ||
5 | |||
6 | Lemma map_insert_empty_lookup {A} `{FinMap K M} | ||
7 | (i j : K) (u v : A) : | ||
8 | <[i := u]> (∅ : M A) !! j = Some v → i = j ∧ v = u. | ||
9 | Proof. | ||
10 | intros Hiel. | ||
11 | destruct (decide (i = j)). | ||
12 | - split; try done. simplify_eq /=. | ||
13 | rewrite lookup_insert in Hiel. congruence. | ||
14 | - rewrite lookup_insert_ne in Hiel; try done. | ||
15 | exfalso. eapply lookup_empty_Some, Hiel. | ||
16 | Qed. | ||
17 | |||
18 | Lemma map_insert_ne_inv `{FinMap K M} {A} | ||
19 | (m1 m2 : M A) i j x y : | ||
20 | i ≠ j → | ||
21 | <[i := x]>m1 = <[j := y]>m2 → | ||
22 | m2 !! i = Some x ∧ m1 !! j = Some y ∧ | ||
23 | delete i (delete j m1) = delete i (delete j m2). | ||
24 | Proof. | ||
25 | intros Hneq Heq. | ||
26 | split; try split. | ||
27 | - rewrite <-lookup_delete_ne with (i := j) by congruence. | ||
28 | rewrite <-delete_insert_delete with (x := y). | ||
29 | rewrite <-Heq. | ||
30 | rewrite lookup_delete_ne by congruence. | ||
31 | by rewrite lookup_insert. | ||
32 | - rewrite <-lookup_delete_ne with (i := i) by congruence. | ||
33 | rewrite <-delete_insert_delete with (x := x). | ||
34 | rewrite Heq. | ||
35 | rewrite lookup_delete_ne by congruence. | ||
36 | by rewrite lookup_insert. | ||
37 | - setoid_rewrite <-delete_insert_delete with (x := x) at 1. | ||
38 | setoid_rewrite <-delete_insert_delete with (x := y) at 4. | ||
39 | rewrite <-delete_insert_ne by congruence. | ||
40 | by do 2 f_equal. | ||
41 | Qed. | ||
42 | |||
43 | Lemma map_insert_inv `{FinMap K M} {A} | ||
44 | (m1 m2 : M A) i x y : | ||
45 | <[i := x]>m1 = <[i := y]>m2 → | ||
46 | x = y ∧ delete i m1 = delete i m2. | ||
47 | Proof. | ||
48 | intros Heq. | ||
49 | split; try split. | ||
50 | - apply Some_inj. | ||
51 | replace (Some x) with (<[i := x]>m1 !! i) by apply lookup_insert. | ||
52 | replace (Some y) with (<[i := y]>m2 !! i) by apply lookup_insert. | ||
53 | by rewrite Heq. | ||
54 | - replace (delete i m1) with (delete i (<[i := x]>m1)) | ||
55 | by apply delete_insert_delete. | ||
56 | replace (delete i m2) with (delete i (<[i := y]>m2)) | ||
57 | by apply delete_insert_delete. | ||
58 | by rewrite Heq. | ||
59 | Qed. | ||
60 | |||
61 | Lemma fmap_insert_lookup `{FinMap K M} {A B} | ||
62 | (f : A → B) (m1 : M A) (m2 : M B) i x : | ||
63 | f <$> m1 = <[i := x]>m2 → | ||
64 | f <$> m1 !! i = Some x. | ||
65 | Proof. | ||
66 | intros Hmap. | ||
67 | rewrite <-lookup_fmap. | ||
68 | rewrite Hmap. | ||
69 | apply lookup_insert. | ||
70 | Qed. | ||
71 | |||
72 | Lemma map_dom_delete_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
73 | (m1 : M A) (m2 : M B) i x y : | ||
74 | dom (delete i m1) = dom (delete i m2) → | ||
75 | dom (<[i := x]>m1) = dom (<[i := y]> m2). | ||
76 | Proof. | ||
77 | intros Hdel. | ||
78 | setoid_rewrite <-insert_delete_insert at 1 2. | ||
79 | rewrite 2 dom_insert_L. | ||
80 | set_solver. | ||
81 | Qed. | ||
82 | |||
83 | Lemma map_dom_delete_insert_subseteq_L `{FinMapDom K M D} `{!LeibnizEquiv D} | ||
84 | {A B} (m1 : M A) (m2 : M B) i x y : | ||
85 | dom (delete i m1) ⊆ dom (delete i m2) → | ||
86 | dom (<[i := x]>m1) ⊆ dom (<[i := y]> m2). | ||
87 | Proof. | ||
88 | intros Hdel. | ||
89 | setoid_rewrite <-insert_delete_insert at 1 2. | ||
90 | rewrite 2 dom_insert_L. | ||
91 | set_solver. | ||
92 | Qed. | ||
93 | |||
94 | Lemma map_dom_empty_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
95 | (m : M A) : dom (∅ : M A) = dom m → m = ∅. | ||
96 | Proof. | ||
97 | intros Hdom. | ||
98 | rewrite dom_empty_L in Hdom. | ||
99 | symmetry in Hdom. | ||
100 | by apply dom_empty_inv_L. | ||
101 | Qed. | ||
102 | |||
103 | Lemma map_dom_insert_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
104 | (i : K) (x : A) (m1 m2 : M A) : | ||
105 | dom (<[i := x]>m1) = dom m2 → | ||
106 | dom (delete i m1) = dom (delete i m2) ∧ i ∈ dom m2. | ||
107 | Proof. set_solver. Qed. | ||
108 | |||
109 | (** map_mapM *) | ||
110 | |||
111 | Definition map_mapM {M : Type → Type} `{MBind F} `{MRet F} `{FinMap K M} {A B} | ||
112 | (f : A → F B) (m : M A) : F (M B) := | ||
113 | map_fold (λ i x om', m' ← om'; x' ← f x; mret $ <[i := x']>m') (mret ∅) m. | ||
114 | |||
115 | Lemma map_mapM_dom_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
116 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
117 | map_mapM f m1 = Some m2 → dom m1 = dom m2. | ||
118 | Proof. | ||
119 | revert m2. | ||
120 | induction m1 using map_ind; intros m2 HmapM. | ||
121 | - unfold map_mapM in HmapM. rewrite map_fold_empty in HmapM. | ||
122 | simplify_option_eq. | ||
123 | by rewrite 2 dom_empty_L. | ||
124 | - unfold map_mapM in HmapM. | ||
125 | rewrite map_fold_insert_L in HmapM. | ||
126 | + simplify_option_eq. | ||
127 | apply IHm1 in Heqo. | ||
128 | rewrite 2 dom_insert_L. | ||
129 | by f_equal. | ||
130 | + intros. | ||
131 | destruct y; simplify_option_eq; try done. | ||
132 | destruct (f z2); simplify_option_eq. | ||
133 | * destruct (f z1); simplify_option_eq; try done. | ||
134 | f_equal. by apply insert_commute. | ||
135 | * destruct (f z1); by simplify_option_eq. | ||
136 | + done. | ||
137 | Qed. | ||
138 | |||
139 | Lemma map_mapM_option_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
140 | (f : A → option B) (m1 : M A) (m2 m2' : M B) | ||
141 | (i : K) (x : A) (x' : B) : | ||
142 | m1 !! i = None → | ||
143 | map_mapM f (<[i := x]>m1) = Some m2 → | ||
144 | ∃ x', f x = Some x' ∧ map_mapM f m1 = Some (delete i m2). | ||
145 | Proof. | ||
146 | intros Helem HmapM. | ||
147 | unfold map_mapM in HmapM. | ||
148 | rewrite map_fold_insert_L in HmapM. | ||
149 | - simplify_option_eq. | ||
150 | exists H15. | ||
151 | split; try done. | ||
152 | rewrite delete_insert. | ||
153 | apply Heqo. | ||
154 | apply map_mapM_dom_L in Heqo. | ||
155 | apply not_elem_of_dom in Helem. | ||
156 | apply not_elem_of_dom. | ||
157 | set_solver. | ||
158 | - intros. | ||
159 | destruct y; simplify_option_eq; try done. | ||
160 | destruct (f z2); simplify_option_eq. | ||
161 | + destruct (f z1); simplify_option_eq; try done. | ||
162 | f_equal. by apply insert_commute. | ||
163 | + destruct (f z1); by simplify_option_eq. | ||
164 | - done. | ||
165 | Qed. | ||
166 | |||
167 | (** map_Forall2 *) | ||
168 | |||
169 | Definition map_Forall2 `{∀ A, Lookup K A (M A)} {A B} | ||
170 | (R : A → B → Prop) := | ||
171 | map_relation (M := M) R (λ _, False) (λ _, False). | ||
172 | |||
173 | Global Instance map_Forall2_dec `{FinMap K M} {A B} (R : A → B → Prop) | ||
174 | `{∀ a b, Decision (R a b)} : RelDecision (map_Forall2 (M := M) R). | ||
175 | Proof. apply map_relation_dec; intros; try done; apply False_dec. Qed. | ||
176 | |||
177 | Lemma map_Forall2_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
178 | (m1 : M A) (m2 : M B) R i x y : | ||
179 | m1 !! i = None → | ||
180 | m2 !! i = None → | ||
181 | R x y → | ||
182 | map_Forall2 R m1 m2 → | ||
183 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2). | ||
184 | Proof. | ||
185 | unfold map_Forall2, map_relation, option_relation. | ||
186 | intros Him1 Him2 HR HForall2 j. | ||
187 | destruct (decide (i = j)). | ||
188 | + simplify_option_eq. by rewrite 2 lookup_insert. | ||
189 | + rewrite 2 lookup_insert_ne by done. apply HForall2. | ||
190 | Qed. | ||
191 | |||
192 | Lemma map_Forall2_insert_weak `{FinMap K M} {A B} | ||
193 | (m1 : M A) (m2 : M B) R i x y : | ||
194 | R x y → | ||
195 | map_Forall2 R (delete i m1) (delete i m2) → | ||
196 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2). | ||
197 | Proof. | ||
198 | unfold map_Forall2, map_relation, option_relation. | ||
199 | intros HR HForall2 j. | ||
200 | destruct (decide (i = j)). | ||
201 | - simplify_option_eq. by rewrite 2 lookup_insert. | ||
202 | - rewrite 2 lookup_insert_ne by done. | ||
203 | rewrite <-lookup_delete_ne with (i := i) by done. | ||
204 | replace (m2 !! j) with (delete i m2 !! j); try by apply lookup_delete_ne. | ||
205 | apply HForall2. | ||
206 | Qed. | ||
207 | |||
208 | Lemma map_Forall2_destruct `{FinMap K M} {A B} | ||
209 | (m1 : M A) (m2 : M B) R i x : | ||
210 | map_Forall2 R (<[i := x]>m1) m2 → | ||
211 | ∃ y m2', m2' !! i = None ∧ m2 = <[i := y]>m2'. | ||
212 | Proof. | ||
213 | intros HForall2. | ||
214 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
215 | pose proof (HForall2 i). clear HForall2. | ||
216 | case_match. | ||
217 | - case_match; try done. | ||
218 | exists b, (delete i m2). | ||
219 | split. | ||
220 | * apply lookup_delete. | ||
221 | * by rewrite insert_delete_insert, insert_id. | ||
222 | - case_match; try done. | ||
223 | by rewrite lookup_insert in H8. | ||
224 | Qed. | ||
225 | |||
226 | Lemma map_Forall2_insert_inv `{FinMap K M} {A B} | ||
227 | (m1 : M A) (m2 : M B) R i x y : | ||
228 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2) → | ||
229 | R x y ∧ map_Forall2 R (delete i m1) (delete i m2). | ||
230 | Proof. | ||
231 | intros HForall2. | ||
232 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
233 | pose proof (HForall2 i). | ||
234 | case_match. | ||
235 | - case_match; try done. | ||
236 | rewrite lookup_insert in H8. rewrite lookup_insert in H9. | ||
237 | simplify_eq /=. split; try done. | ||
238 | unfold map_Forall2, map_relation, option_relation. | ||
239 | intros j. | ||
240 | destruct (decide (i = j)). | ||
241 | + simplify_option_eq. | ||
242 | case_match. | ||
243 | * by rewrite lookup_delete in H8. | ||
244 | * case_match; [|done]. | ||
245 | by rewrite lookup_delete in H9. | ||
246 | + case_match; case_match; | ||
247 | rewrite lookup_delete_ne in H8 by done; | ||
248 | rewrite lookup_delete_ne in H9 by done; | ||
249 | pose proof (HForall2 j); | ||
250 | case_match; case_match; try done; | ||
251 | rewrite lookup_insert_ne in H11 by done; | ||
252 | rewrite lookup_insert_ne in H12 by done; | ||
253 | by simplify_eq /=. | ||
254 | - by rewrite lookup_insert in H8. | ||
255 | Qed. | ||
256 | |||
257 | Lemma map_Forall2_insert_inv_strict `{FinMap K M} {A B} | ||
258 | (m1 : M A) (m2 : M B) R i x y : | ||
259 | m1 !! i = None → | ||
260 | m2 !! i = None → | ||
261 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2) → | ||
262 | R x y ∧ map_Forall2 R m1 m2. | ||
263 | Proof. | ||
264 | intros Him1 Him2 HForall2. | ||
265 | apply map_Forall2_insert_inv in HForall2 as [HPixy HForall2]. | ||
266 | split; try done. | ||
267 | apply delete_notin in Him1, Him2. | ||
268 | by rewrite Him1, Him2 in HForall2. | ||
269 | Qed. | ||
270 | |||
271 | Lemma map_Forall2_dom_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
272 | (R : A → B → Prop) (m1 : M A) (m2 : M B) : | ||
273 | map_Forall2 R m1 m2 → dom m1 = dom m2. | ||
274 | Proof. | ||
275 | revert m2. | ||
276 | induction m1 using map_ind; intros m2. | ||
277 | - intros HForall2. | ||
278 | destruct m2 using map_ind; [set_solver|]. | ||
279 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
280 | pose proof (HForall2 i). by rewrite lookup_empty, lookup_insert in H15. | ||
281 | - intros HForall2. | ||
282 | apply map_Forall2_destruct in HForall2 as Hm2. | ||
283 | destruct Hm2 as [y [m2' [Hm21 Hm22]]]. simplify_eq /=. | ||
284 | apply map_Forall2_insert_inv_strict in HForall2 as [_ HForall2]; try done. | ||
285 | set_solver. | ||
286 | Qed. | ||
287 | |||
288 | Lemma map_Forall2_empty_l_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
289 | (R : A → B → Prop) (m2 : M B) : | ||
290 | map_Forall2 R ∅ m2 → m2 = ∅. | ||
291 | Proof. | ||
292 | intros HForall2. | ||
293 | apply map_Forall2_dom_L in HForall2 as Hdom. | ||
294 | rewrite dom_empty_L in Hdom. | ||
295 | symmetry in Hdom. | ||
296 | by apply dom_empty_inv_L in Hdom. | ||
297 | Qed. | ||
298 | |||
299 | Lemma map_Forall2_empty_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
300 | (R : A → B → Prop) (m1 : M A) : | ||
301 | map_Forall2 R m1 ∅ → m1 = ∅. | ||
302 | Proof. | ||
303 | intros HForall2. | ||
304 | apply map_Forall2_dom_L in HForall2 as Hdom. | ||
305 | rewrite dom_empty_L in Hdom. | ||
306 | by apply dom_empty_inv_L in Hdom. | ||
307 | Qed. | ||
308 | |||
309 | Lemma map_Forall2_empty `{FinMap K M} {A B} (R : A → B → Prop): | ||
310 | map_Forall2 R (∅ : M A) (∅ : M B). | ||
311 | Proof. | ||
312 | unfold map_Forall2, map_relation. | ||
313 | intros i. by rewrite 2 lookup_empty. | ||
314 | Qed. | ||
315 | |||
316 | Lemma map_Forall2_impl_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
317 | (R1 R2 : A → B → Prop) : | ||
318 | (∀ a b, R1 a b → R2 a b) → | ||
319 | ∀ (m1 : M A) (m2 : M B), | ||
320 | map_Forall2 R1 m1 m2 → map_Forall2 R2 m1 m2. | ||
321 | Proof. | ||
322 | intros HR1R2 ?? HForall2. | ||
323 | unfold map_Forall2, map_relation, option_relation in *. | ||
324 | intros j. pose proof (HForall2 j). clear HForall2. | ||
325 | case_match; case_match; try done. | ||
326 | by apply HR1R2. | ||
327 | Qed. | ||
328 | |||
329 | Lemma map_Forall2_fmap_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B C} | ||
330 | (P : A → C → Prop) (m1 : M A) (m2 : M B) (f : B → C) : | ||
331 | map_Forall2 P m1 (f <$> m2) → map_Forall2 (λ l r, P l (f r)) m1 m2. | ||
332 | Proof. | ||
333 | intros HForall2. | ||
334 | unfold map_Forall2, map_relation, option_relation in *. | ||
335 | intros j. pose proof (HForall2 j). clear HForall2. | ||
336 | case_match; case_match; try done; case_match; | ||
337 | rewrite lookup_fmap in H16; rewrite H17 in H16; by simplify_eq/=. | ||
338 | Qed. | ||
339 | |||
340 | Lemma map_Forall2_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
341 | (m1 m2 : M A) : | ||
342 | m1 = m2 ↔ map_Forall2 (=) m1 m2. | ||
343 | Proof. | ||
344 | split; revert m2. | ||
345 | - induction m1 using map_ind; intros m2 Heq; inv Heq. | ||
346 | + apply map_Forall2_empty. | ||
347 | + apply map_Forall2_insert_L; try done. by apply IHm1. | ||
348 | - induction m1 using map_ind; intros m2 HForall2. | ||
349 | + by apply map_Forall2_empty_l_L in HForall2. | ||
350 | + apply map_Forall2_destruct in HForall2 as Hm. | ||
351 | destruct Hm as [y [m2' [Him2' Heqm2]]]. subst. | ||
352 | apply map_Forall2_insert_inv in HForall2 as [Heqxy HForall2]. | ||
353 | rewrite 2 delete_notin in HForall2 by done. | ||
354 | apply IHm1 in HForall2. by subst. | ||
355 | Qed. | ||
356 | |||
357 | Lemma map_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
358 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
359 | x1 = x2 → | ||
360 | delete i m1 = delete i m2 → | ||
361 | <[i := x1]>m1 = <[i := x2]>m2. | ||
362 | Proof. | ||
363 | intros Heq Hdel. | ||
364 | apply map_Forall2_eq_L. | ||
365 | eapply map_Forall2_insert_weak; [done|]. | ||
366 | by apply map_Forall2_eq_L. | ||
367 | Qed. | ||
368 | |||
369 | Lemma map_insert_rev_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
370 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
371 | <[i := x1]>m1 = <[i := x2]>m2 → x1 = x2 ∧ delete i m1 = delete i m2. | ||
372 | Proof. | ||
373 | intros Heq. apply map_Forall2_eq_L in Heq. | ||
374 | apply map_Forall2_insert_inv in Heq as [Heq1 Heq2]. | ||
375 | by apply map_Forall2_eq_L in Heq2. | ||
376 | Qed. | ||
377 | |||
378 | Lemma map_insert_rev_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
379 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
380 | <[i := x1]>m1 = <[i := x2]>m2 → x1 = x2. | ||
381 | Proof. apply map_insert_rev_L. Qed. | ||
382 | |||
383 | Lemma map_insert_rev_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
384 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
385 | <[i := x1]>m1 = <[i := x2]>m2 → delete i m1 = delete i m2. | ||
386 | Proof. apply map_insert_rev_L. Qed. | ||
387 | |||
388 | Lemma map_Forall2_alt_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
389 | (R : A → B → Prop) (m1 : M A) (m2 : M B) : | ||
390 | map_Forall2 R m1 m2 ↔ | ||
391 | dom m1 = dom m2 ∧ ∀ i x y, m1 !! i = Some x → m2 !! i = Some y → R x y. | ||
392 | Proof. | ||
393 | split. | ||
394 | - intros HForall2. | ||
395 | split. | ||
396 | + by apply map_Forall2_dom_L in HForall2. | ||
397 | + intros i x y Him1 Him2. | ||
398 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
399 | pose proof (HForall2 i). clear HForall2. | ||
400 | by simplify_option_eq. | ||
401 | - intros [Hdom HForall2]. | ||
402 | unfold map_Forall2, map_relation, option_relation. | ||
403 | intros j. | ||
404 | case_match; case_match; try done. | ||
405 | + by eapply HForall2. | ||
406 | + apply mk_is_Some in H14. | ||
407 | apply not_elem_of_dom in H15. | ||
408 | apply elem_of_dom in H14. | ||
409 | set_solver. | ||
410 | + apply not_elem_of_dom in H14. | ||
411 | apply mk_is_Some in H15. | ||
412 | apply elem_of_dom in H15. | ||
413 | set_solver. | ||
414 | Qed. | ||
415 | |||
416 | (** Relation between map_mapM and map_Forall2 *) | ||
417 | |||
418 | Lemma map_mapM_Some_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
419 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
420 | map_mapM f m1 = Some m2 → map_Forall2 (λ x y, f x = Some y) m1 m2. | ||
421 | Proof. | ||
422 | revert m1 m2 f. | ||
423 | induction m1 using map_ind. | ||
424 | - intros m2 f Hmap_mapM. | ||
425 | unfold map_mapM in Hmap_mapM. | ||
426 | rewrite map_fold_empty in Hmap_mapM. | ||
427 | simplify_option_eq. apply map_Forall2_empty. | ||
428 | - intros m2 f Hmap_mapM. | ||
429 | csimpl in Hmap_mapM. | ||
430 | unfold map_mapM in Hmap_mapM. | ||
431 | csimpl in Hmap_mapM. | ||
432 | rewrite map_fold_insert_L in Hmap_mapM. | ||
433 | + simplify_option_eq. | ||
434 | apply IHm1 in Heqo. | ||
435 | apply map_Forall2_insert_L; try done. | ||
436 | apply not_elem_of_dom in H14. | ||
437 | apply not_elem_of_dom. | ||
438 | apply map_Forall2_dom_L in Heqo. | ||
439 | set_solver. | ||
440 | + intros. | ||
441 | destruct y; simplify_option_eq; try done. | ||
442 | destruct (f z2); simplify_option_eq. | ||
443 | * destruct (f z1); simplify_option_eq; try done. | ||
444 | f_equal. by apply insert_commute. | ||
445 | * destruct (f z1); by simplify_option_eq. | ||
446 | + done. | ||
447 | Qed. | ||
448 | |||
449 | Lemma map_mapM_Some_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
450 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
451 | map_Forall2 (λ x y, f x = Some y) m1 m2 → map_mapM f m1 = Some m2. | ||
452 | Proof. | ||
453 | revert m2. | ||
454 | induction m1 using map_ind; intros m2 HForall2. | ||
455 | - unfold map_mapM. rewrite map_fold_empty. | ||
456 | apply map_Forall2_empty_l_L in HForall2. | ||
457 | by simplify_eq. | ||
458 | - destruct (map_Forall2_destruct _ _ _ _ _ HForall2) as | ||
459 | [y [m2' [HForall21 HForall22]]]. subst. | ||
460 | destruct (map_Forall2_insert_inv_strict _ _ _ _ _ _ H14 HForall21 HForall2) as | ||
461 | [Hfy HForall22]. | ||
462 | apply IHm1 in HForall22. | ||
463 | unfold map_mapM. | ||
464 | rewrite map_fold_insert_L; try by simplify_option_eq. | ||
465 | intros. | ||
466 | destruct y0; simplify_option_eq; try done. | ||
467 | destruct (f z2); simplify_option_eq. | ||
468 | * destruct (f z1); simplify_option_eq; try done. | ||
469 | f_equal. by apply insert_commute. | ||
470 | * destruct (f z1); by simplify_option_eq. | ||
471 | Qed. | ||
472 | |||
473 | Lemma map_mapM_Some_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
474 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
475 | map_mapM f m1 = Some m2 ↔ map_Forall2 (λ x y, f x = Some y) m1 m2. | ||
476 | Proof. split; [apply map_mapM_Some_1_L | apply map_mapM_Some_2_L]. Qed. | ||