diff options
Diffstat (limited to 'maptools.v')
| -rw-r--r-- | maptools.v | 476 |
1 files changed, 476 insertions, 0 deletions
diff --git a/maptools.v b/maptools.v new file mode 100644 index 0000000..2478430 --- /dev/null +++ b/maptools.v | |||
| @@ -0,0 +1,476 @@ | |||
| 1 | Require Import Coq.Strings.String. | ||
| 2 | From stdpp Require Import countable fin_maps fin_map_dom. | ||
| 3 | |||
| 4 | (** Generic lemmas for finite maps and their domains *) | ||
| 5 | |||
| 6 | Lemma map_insert_empty_lookup {A} `{FinMap K M} | ||
| 7 | (i j : K) (u v : A) : | ||
| 8 | <[i := u]> (∅ : M A) !! j = Some v → i = j ∧ v = u. | ||
| 9 | Proof. | ||
| 10 | intros Hiel. | ||
| 11 | destruct (decide (i = j)). | ||
| 12 | - split; try done. simplify_eq /=. | ||
| 13 | rewrite lookup_insert in Hiel. congruence. | ||
| 14 | - rewrite lookup_insert_ne in Hiel; try done. | ||
| 15 | exfalso. eapply lookup_empty_Some, Hiel. | ||
| 16 | Qed. | ||
| 17 | |||
| 18 | Lemma map_insert_ne_inv `{FinMap K M} {A} | ||
| 19 | (m1 m2 : M A) i j x y : | ||
| 20 | i ≠ j → | ||
| 21 | <[i := x]>m1 = <[j := y]>m2 → | ||
| 22 | m2 !! i = Some x ∧ m1 !! j = Some y ∧ | ||
| 23 | delete i (delete j m1) = delete i (delete j m2). | ||
| 24 | Proof. | ||
| 25 | intros Hneq Heq. | ||
| 26 | split; try split. | ||
| 27 | - rewrite <-lookup_delete_ne with (i := j) by congruence. | ||
| 28 | rewrite <-delete_insert_delete with (x := y). | ||
| 29 | rewrite <-Heq. | ||
| 30 | rewrite lookup_delete_ne by congruence. | ||
| 31 | by rewrite lookup_insert. | ||
| 32 | - rewrite <-lookup_delete_ne with (i := i) by congruence. | ||
| 33 | rewrite <-delete_insert_delete with (x := x). | ||
| 34 | rewrite Heq. | ||
| 35 | rewrite lookup_delete_ne by congruence. | ||
| 36 | by rewrite lookup_insert. | ||
| 37 | - setoid_rewrite <-delete_insert_delete with (x := x) at 1. | ||
| 38 | setoid_rewrite <-delete_insert_delete with (x := y) at 4. | ||
| 39 | rewrite <-delete_insert_ne by congruence. | ||
| 40 | by do 2 f_equal. | ||
| 41 | Qed. | ||
| 42 | |||
| 43 | Lemma map_insert_inv `{FinMap K M} {A} | ||
| 44 | (m1 m2 : M A) i x y : | ||
| 45 | <[i := x]>m1 = <[i := y]>m2 → | ||
| 46 | x = y ∧ delete i m1 = delete i m2. | ||
| 47 | Proof. | ||
| 48 | intros Heq. | ||
| 49 | split; try split. | ||
| 50 | - apply Some_inj. | ||
| 51 | replace (Some x) with (<[i := x]>m1 !! i) by apply lookup_insert. | ||
| 52 | replace (Some y) with (<[i := y]>m2 !! i) by apply lookup_insert. | ||
| 53 | by rewrite Heq. | ||
| 54 | - replace (delete i m1) with (delete i (<[i := x]>m1)) | ||
| 55 | by apply delete_insert_delete. | ||
| 56 | replace (delete i m2) with (delete i (<[i := y]>m2)) | ||
| 57 | by apply delete_insert_delete. | ||
| 58 | by rewrite Heq. | ||
| 59 | Qed. | ||
| 60 | |||
| 61 | Lemma fmap_insert_lookup `{FinMap K M} {A B} | ||
| 62 | (f : A → B) (m1 : M A) (m2 : M B) i x : | ||
| 63 | f <$> m1 = <[i := x]>m2 → | ||
| 64 | f <$> m1 !! i = Some x. | ||
| 65 | Proof. | ||
| 66 | intros Hmap. | ||
| 67 | rewrite <-lookup_fmap. | ||
| 68 | rewrite Hmap. | ||
| 69 | apply lookup_insert. | ||
| 70 | Qed. | ||
| 71 | |||
| 72 | Lemma map_dom_delete_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 73 | (m1 : M A) (m2 : M B) i x y : | ||
| 74 | dom (delete i m1) = dom (delete i m2) → | ||
| 75 | dom (<[i := x]>m1) = dom (<[i := y]> m2). | ||
| 76 | Proof. | ||
| 77 | intros Hdel. | ||
| 78 | setoid_rewrite <-insert_delete_insert at 1 2. | ||
| 79 | rewrite 2 dom_insert_L. | ||
| 80 | set_solver. | ||
| 81 | Qed. | ||
| 82 | |||
| 83 | Lemma map_dom_delete_insert_subseteq_L `{FinMapDom K M D} `{!LeibnizEquiv D} | ||
| 84 | {A B} (m1 : M A) (m2 : M B) i x y : | ||
| 85 | dom (delete i m1) ⊆ dom (delete i m2) → | ||
| 86 | dom (<[i := x]>m1) ⊆ dom (<[i := y]> m2). | ||
| 87 | Proof. | ||
| 88 | intros Hdel. | ||
| 89 | setoid_rewrite <-insert_delete_insert at 1 2. | ||
| 90 | rewrite 2 dom_insert_L. | ||
| 91 | set_solver. | ||
| 92 | Qed. | ||
| 93 | |||
| 94 | Lemma map_dom_empty_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 95 | (m : M A) : dom (∅ : M A) = dom m → m = ∅. | ||
| 96 | Proof. | ||
| 97 | intros Hdom. | ||
| 98 | rewrite dom_empty_L in Hdom. | ||
| 99 | symmetry in Hdom. | ||
| 100 | by apply dom_empty_inv_L. | ||
| 101 | Qed. | ||
| 102 | |||
| 103 | Lemma map_dom_insert_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 104 | (i : K) (x : A) (m1 m2 : M A) : | ||
| 105 | dom (<[i := x]>m1) = dom m2 → | ||
| 106 | dom (delete i m1) = dom (delete i m2) ∧ i ∈ dom m2. | ||
| 107 | Proof. set_solver. Qed. | ||
| 108 | |||
| 109 | (** map_mapM *) | ||
| 110 | |||
| 111 | Definition map_mapM {M : Type → Type} `{MBind F} `{MRet F} `{FinMap K M} {A B} | ||
| 112 | (f : A → F B) (m : M A) : F (M B) := | ||
| 113 | map_fold (λ i x om', m' ← om'; x' ← f x; mret $ <[i := x']>m') (mret ∅) m. | ||
| 114 | |||
| 115 | Lemma map_mapM_dom_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 116 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
| 117 | map_mapM f m1 = Some m2 → dom m1 = dom m2. | ||
| 118 | Proof. | ||
| 119 | revert m2. | ||
| 120 | induction m1 using map_ind; intros m2 HmapM. | ||
| 121 | - unfold map_mapM in HmapM. rewrite map_fold_empty in HmapM. | ||
| 122 | simplify_option_eq. | ||
| 123 | by rewrite 2 dom_empty_L. | ||
| 124 | - unfold map_mapM in HmapM. | ||
| 125 | rewrite map_fold_insert_L in HmapM. | ||
| 126 | + simplify_option_eq. | ||
| 127 | apply IHm1 in Heqo. | ||
| 128 | rewrite 2 dom_insert_L. | ||
| 129 | by f_equal. | ||
| 130 | + intros. | ||
| 131 | destruct y; simplify_option_eq; try done. | ||
| 132 | destruct (f z2); simplify_option_eq. | ||
| 133 | * destruct (f z1); simplify_option_eq; try done. | ||
| 134 | f_equal. by apply insert_commute. | ||
| 135 | * destruct (f z1); by simplify_option_eq. | ||
| 136 | + done. | ||
| 137 | Qed. | ||
| 138 | |||
| 139 | Lemma map_mapM_option_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 140 | (f : A → option B) (m1 : M A) (m2 m2' : M B) | ||
| 141 | (i : K) (x : A) (x' : B) : | ||
| 142 | m1 !! i = None → | ||
| 143 | map_mapM f (<[i := x]>m1) = Some m2 → | ||
| 144 | ∃ x', f x = Some x' ∧ map_mapM f m1 = Some (delete i m2). | ||
| 145 | Proof. | ||
| 146 | intros Helem HmapM. | ||
| 147 | unfold map_mapM in HmapM. | ||
| 148 | rewrite map_fold_insert_L in HmapM. | ||
| 149 | - simplify_option_eq. | ||
| 150 | exists H15. | ||
| 151 | split; try done. | ||
| 152 | rewrite delete_insert. | ||
| 153 | apply Heqo. | ||
| 154 | apply map_mapM_dom_L in Heqo. | ||
| 155 | apply not_elem_of_dom in Helem. | ||
| 156 | apply not_elem_of_dom. | ||
| 157 | set_solver. | ||
| 158 | - intros. | ||
| 159 | destruct y; simplify_option_eq; try done. | ||
| 160 | destruct (f z2); simplify_option_eq. | ||
| 161 | + destruct (f z1); simplify_option_eq; try done. | ||
| 162 | f_equal. by apply insert_commute. | ||
| 163 | + destruct (f z1); by simplify_option_eq. | ||
| 164 | - done. | ||
| 165 | Qed. | ||
| 166 | |||
| 167 | (** map_Forall2 *) | ||
| 168 | |||
| 169 | Definition map_Forall2 `{∀ A, Lookup K A (M A)} {A B} | ||
| 170 | (R : A → B → Prop) := | ||
| 171 | map_relation (M := M) R (λ _, False) (λ _, False). | ||
| 172 | |||
| 173 | Global Instance map_Forall2_dec `{FinMap K M} {A B} (R : A → B → Prop) | ||
| 174 | `{∀ a b, Decision (R a b)} : RelDecision (map_Forall2 (M := M) R). | ||
| 175 | Proof. apply map_relation_dec; intros; try done; apply False_dec. Qed. | ||
| 176 | |||
| 177 | Lemma map_Forall2_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 178 | (m1 : M A) (m2 : M B) R i x y : | ||
| 179 | m1 !! i = None → | ||
| 180 | m2 !! i = None → | ||
| 181 | R x y → | ||
| 182 | map_Forall2 R m1 m2 → | ||
| 183 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2). | ||
| 184 | Proof. | ||
| 185 | unfold map_Forall2, map_relation, option_relation. | ||
| 186 | intros Him1 Him2 HR HForall2 j. | ||
| 187 | destruct (decide (i = j)). | ||
| 188 | + simplify_option_eq. by rewrite 2 lookup_insert. | ||
| 189 | + rewrite 2 lookup_insert_ne by done. apply HForall2. | ||
| 190 | Qed. | ||
| 191 | |||
| 192 | Lemma map_Forall2_insert_weak `{FinMap K M} {A B} | ||
| 193 | (m1 : M A) (m2 : M B) R i x y : | ||
| 194 | R x y → | ||
| 195 | map_Forall2 R (delete i m1) (delete i m2) → | ||
| 196 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2). | ||
| 197 | Proof. | ||
| 198 | unfold map_Forall2, map_relation, option_relation. | ||
| 199 | intros HR HForall2 j. | ||
| 200 | destruct (decide (i = j)). | ||
| 201 | - simplify_option_eq. by rewrite 2 lookup_insert. | ||
| 202 | - rewrite 2 lookup_insert_ne by done. | ||
| 203 | rewrite <-lookup_delete_ne with (i := i) by done. | ||
| 204 | replace (m2 !! j) with (delete i m2 !! j); try by apply lookup_delete_ne. | ||
| 205 | apply HForall2. | ||
| 206 | Qed. | ||
| 207 | |||
| 208 | Lemma map_Forall2_destruct `{FinMap K M} {A B} | ||
| 209 | (m1 : M A) (m2 : M B) R i x : | ||
| 210 | map_Forall2 R (<[i := x]>m1) m2 → | ||
| 211 | ∃ y m2', m2' !! i = None ∧ m2 = <[i := y]>m2'. | ||
| 212 | Proof. | ||
| 213 | intros HForall2. | ||
| 214 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
| 215 | pose proof (HForall2 i). clear HForall2. | ||
| 216 | case_match. | ||
| 217 | - case_match; try done. | ||
| 218 | exists b, (delete i m2). | ||
| 219 | split. | ||
| 220 | * apply lookup_delete. | ||
| 221 | * by rewrite insert_delete_insert, insert_id. | ||
| 222 | - case_match; try done. | ||
| 223 | by rewrite lookup_insert in H8. | ||
| 224 | Qed. | ||
| 225 | |||
| 226 | Lemma map_Forall2_insert_inv `{FinMap K M} {A B} | ||
| 227 | (m1 : M A) (m2 : M B) R i x y : | ||
| 228 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2) → | ||
| 229 | R x y ∧ map_Forall2 R (delete i m1) (delete i m2). | ||
| 230 | Proof. | ||
| 231 | intros HForall2. | ||
| 232 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
| 233 | pose proof (HForall2 i). | ||
| 234 | case_match. | ||
| 235 | - case_match; try done. | ||
| 236 | rewrite lookup_insert in H8. rewrite lookup_insert in H9. | ||
| 237 | simplify_eq /=. split; try done. | ||
| 238 | unfold map_Forall2, map_relation, option_relation. | ||
| 239 | intros j. | ||
| 240 | destruct (decide (i = j)). | ||
| 241 | + simplify_option_eq. | ||
| 242 | case_match. | ||
| 243 | * by rewrite lookup_delete in H8. | ||
| 244 | * case_match; [|done]. | ||
| 245 | by rewrite lookup_delete in H9. | ||
| 246 | + case_match; case_match; | ||
| 247 | rewrite lookup_delete_ne in H8 by done; | ||
| 248 | rewrite lookup_delete_ne in H9 by done; | ||
| 249 | pose proof (HForall2 j); | ||
| 250 | case_match; case_match; try done; | ||
| 251 | rewrite lookup_insert_ne in H11 by done; | ||
| 252 | rewrite lookup_insert_ne in H12 by done; | ||
| 253 | by simplify_eq /=. | ||
| 254 | - by rewrite lookup_insert in H8. | ||
| 255 | Qed. | ||
| 256 | |||
| 257 | Lemma map_Forall2_insert_inv_strict `{FinMap K M} {A B} | ||
| 258 | (m1 : M A) (m2 : M B) R i x y : | ||
| 259 | m1 !! i = None → | ||
| 260 | m2 !! i = None → | ||
| 261 | map_Forall2 R (<[i := x]>m1) (<[i := y]>m2) → | ||
| 262 | R x y ∧ map_Forall2 R m1 m2. | ||
| 263 | Proof. | ||
| 264 | intros Him1 Him2 HForall2. | ||
| 265 | apply map_Forall2_insert_inv in HForall2 as [HPixy HForall2]. | ||
| 266 | split; try done. | ||
| 267 | apply delete_notin in Him1, Him2. | ||
| 268 | by rewrite Him1, Him2 in HForall2. | ||
| 269 | Qed. | ||
| 270 | |||
| 271 | Lemma map_Forall2_dom_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 272 | (R : A → B → Prop) (m1 : M A) (m2 : M B) : | ||
| 273 | map_Forall2 R m1 m2 → dom m1 = dom m2. | ||
| 274 | Proof. | ||
| 275 | revert m2. | ||
| 276 | induction m1 using map_ind; intros m2. | ||
| 277 | - intros HForall2. | ||
| 278 | destruct m2 using map_ind; [set_solver|]. | ||
| 279 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
| 280 | pose proof (HForall2 i). by rewrite lookup_empty, lookup_insert in H15. | ||
| 281 | - intros HForall2. | ||
| 282 | apply map_Forall2_destruct in HForall2 as Hm2. | ||
| 283 | destruct Hm2 as [y [m2' [Hm21 Hm22]]]. simplify_eq /=. | ||
| 284 | apply map_Forall2_insert_inv_strict in HForall2 as [_ HForall2]; try done. | ||
| 285 | set_solver. | ||
| 286 | Qed. | ||
| 287 | |||
| 288 | Lemma map_Forall2_empty_l_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 289 | (R : A → B → Prop) (m2 : M B) : | ||
| 290 | map_Forall2 R ∅ m2 → m2 = ∅. | ||
| 291 | Proof. | ||
| 292 | intros HForall2. | ||
| 293 | apply map_Forall2_dom_L in HForall2 as Hdom. | ||
| 294 | rewrite dom_empty_L in Hdom. | ||
| 295 | symmetry in Hdom. | ||
| 296 | by apply dom_empty_inv_L in Hdom. | ||
| 297 | Qed. | ||
| 298 | |||
| 299 | Lemma map_Forall2_empty_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 300 | (R : A → B → Prop) (m1 : M A) : | ||
| 301 | map_Forall2 R m1 ∅ → m1 = ∅. | ||
| 302 | Proof. | ||
| 303 | intros HForall2. | ||
| 304 | apply map_Forall2_dom_L in HForall2 as Hdom. | ||
| 305 | rewrite dom_empty_L in Hdom. | ||
| 306 | by apply dom_empty_inv_L in Hdom. | ||
| 307 | Qed. | ||
| 308 | |||
| 309 | Lemma map_Forall2_empty `{FinMap K M} {A B} (R : A → B → Prop): | ||
| 310 | map_Forall2 R (∅ : M A) (∅ : M B). | ||
| 311 | Proof. | ||
| 312 | unfold map_Forall2, map_relation. | ||
| 313 | intros i. by rewrite 2 lookup_empty. | ||
| 314 | Qed. | ||
| 315 | |||
| 316 | Lemma map_Forall2_impl_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 317 | (R1 R2 : A → B → Prop) : | ||
| 318 | (∀ a b, R1 a b → R2 a b) → | ||
| 319 | ∀ (m1 : M A) (m2 : M B), | ||
| 320 | map_Forall2 R1 m1 m2 → map_Forall2 R2 m1 m2. | ||
| 321 | Proof. | ||
| 322 | intros HR1R2 ?? HForall2. | ||
| 323 | unfold map_Forall2, map_relation, option_relation in *. | ||
| 324 | intros j. pose proof (HForall2 j). clear HForall2. | ||
| 325 | case_match; case_match; try done. | ||
| 326 | by apply HR1R2. | ||
| 327 | Qed. | ||
| 328 | |||
| 329 | Lemma map_Forall2_fmap_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B C} | ||
| 330 | (P : A → C → Prop) (m1 : M A) (m2 : M B) (f : B → C) : | ||
| 331 | map_Forall2 P m1 (f <$> m2) → map_Forall2 (λ l r, P l (f r)) m1 m2. | ||
| 332 | Proof. | ||
| 333 | intros HForall2. | ||
| 334 | unfold map_Forall2, map_relation, option_relation in *. | ||
| 335 | intros j. pose proof (HForall2 j). clear HForall2. | ||
| 336 | case_match; case_match; try done; case_match; | ||
| 337 | rewrite lookup_fmap in H16; rewrite H17 in H16; by simplify_eq/=. | ||
| 338 | Qed. | ||
| 339 | |||
| 340 | Lemma map_Forall2_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 341 | (m1 m2 : M A) : | ||
| 342 | m1 = m2 ↔ map_Forall2 (=) m1 m2. | ||
| 343 | Proof. | ||
| 344 | split; revert m2. | ||
| 345 | - induction m1 using map_ind; intros m2 Heq; inv Heq. | ||
| 346 | + apply map_Forall2_empty. | ||
| 347 | + apply map_Forall2_insert_L; try done. by apply IHm1. | ||
| 348 | - induction m1 using map_ind; intros m2 HForall2. | ||
| 349 | + by apply map_Forall2_empty_l_L in HForall2. | ||
| 350 | + apply map_Forall2_destruct in HForall2 as Hm. | ||
| 351 | destruct Hm as [y [m2' [Him2' Heqm2]]]. subst. | ||
| 352 | apply map_Forall2_insert_inv in HForall2 as [Heqxy HForall2]. | ||
| 353 | rewrite 2 delete_notin in HForall2 by done. | ||
| 354 | apply IHm1 in HForall2. by subst. | ||
| 355 | Qed. | ||
| 356 | |||
| 357 | Lemma map_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 358 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
| 359 | x1 = x2 → | ||
| 360 | delete i m1 = delete i m2 → | ||
| 361 | <[i := x1]>m1 = <[i := x2]>m2. | ||
| 362 | Proof. | ||
| 363 | intros Heq Hdel. | ||
| 364 | apply map_Forall2_eq_L. | ||
| 365 | eapply map_Forall2_insert_weak; [done|]. | ||
| 366 | by apply map_Forall2_eq_L. | ||
| 367 | Qed. | ||
| 368 | |||
| 369 | Lemma map_insert_rev_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 370 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
| 371 | <[i := x1]>m1 = <[i := x2]>m2 → x1 = x2 ∧ delete i m1 = delete i m2. | ||
| 372 | Proof. | ||
| 373 | intros Heq. apply map_Forall2_eq_L in Heq. | ||
| 374 | apply map_Forall2_insert_inv in Heq as [Heq1 Heq2]. | ||
| 375 | by apply map_Forall2_eq_L in Heq2. | ||
| 376 | Qed. | ||
| 377 | |||
| 378 | Lemma map_insert_rev_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 379 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
| 380 | <[i := x1]>m1 = <[i := x2]>m2 → x1 = x2. | ||
| 381 | Proof. apply map_insert_rev_L. Qed. | ||
| 382 | |||
| 383 | Lemma map_insert_rev_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A} | ||
| 384 | (i : K) (x1 x2 : A) (m1 m2 : M A) : | ||
| 385 | <[i := x1]>m1 = <[i := x2]>m2 → delete i m1 = delete i m2. | ||
| 386 | Proof. apply map_insert_rev_L. Qed. | ||
| 387 | |||
| 388 | Lemma map_Forall2_alt_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 389 | (R : A → B → Prop) (m1 : M A) (m2 : M B) : | ||
| 390 | map_Forall2 R m1 m2 ↔ | ||
| 391 | dom m1 = dom m2 ∧ ∀ i x y, m1 !! i = Some x → m2 !! i = Some y → R x y. | ||
| 392 | Proof. | ||
| 393 | split. | ||
| 394 | - intros HForall2. | ||
| 395 | split. | ||
| 396 | + by apply map_Forall2_dom_L in HForall2. | ||
| 397 | + intros i x y Him1 Him2. | ||
| 398 | unfold map_Forall2, map_relation, option_relation in HForall2. | ||
| 399 | pose proof (HForall2 i). clear HForall2. | ||
| 400 | by simplify_option_eq. | ||
| 401 | - intros [Hdom HForall2]. | ||
| 402 | unfold map_Forall2, map_relation, option_relation. | ||
| 403 | intros j. | ||
| 404 | case_match; case_match; try done. | ||
| 405 | + by eapply HForall2. | ||
| 406 | + apply mk_is_Some in H14. | ||
| 407 | apply not_elem_of_dom in H15. | ||
| 408 | apply elem_of_dom in H14. | ||
| 409 | set_solver. | ||
| 410 | + apply not_elem_of_dom in H14. | ||
| 411 | apply mk_is_Some in H15. | ||
| 412 | apply elem_of_dom in H15. | ||
| 413 | set_solver. | ||
| 414 | Qed. | ||
| 415 | |||
| 416 | (** Relation between map_mapM and map_Forall2 *) | ||
| 417 | |||
| 418 | Lemma map_mapM_Some_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 419 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
| 420 | map_mapM f m1 = Some m2 → map_Forall2 (λ x y, f x = Some y) m1 m2. | ||
| 421 | Proof. | ||
| 422 | revert m1 m2 f. | ||
| 423 | induction m1 using map_ind. | ||
| 424 | - intros m2 f Hmap_mapM. | ||
| 425 | unfold map_mapM in Hmap_mapM. | ||
| 426 | rewrite map_fold_empty in Hmap_mapM. | ||
| 427 | simplify_option_eq. apply map_Forall2_empty. | ||
| 428 | - intros m2 f Hmap_mapM. | ||
| 429 | csimpl in Hmap_mapM. | ||
| 430 | unfold map_mapM in Hmap_mapM. | ||
| 431 | csimpl in Hmap_mapM. | ||
| 432 | rewrite map_fold_insert_L in Hmap_mapM. | ||
| 433 | + simplify_option_eq. | ||
| 434 | apply IHm1 in Heqo. | ||
| 435 | apply map_Forall2_insert_L; try done. | ||
| 436 | apply not_elem_of_dom in H14. | ||
| 437 | apply not_elem_of_dom. | ||
| 438 | apply map_Forall2_dom_L in Heqo. | ||
| 439 | set_solver. | ||
| 440 | + intros. | ||
| 441 | destruct y; simplify_option_eq; try done. | ||
| 442 | destruct (f z2); simplify_option_eq. | ||
| 443 | * destruct (f z1); simplify_option_eq; try done. | ||
| 444 | f_equal. by apply insert_commute. | ||
| 445 | * destruct (f z1); by simplify_option_eq. | ||
| 446 | + done. | ||
| 447 | Qed. | ||
| 448 | |||
| 449 | Lemma map_mapM_Some_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 450 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
| 451 | map_Forall2 (λ x y, f x = Some y) m1 m2 → map_mapM f m1 = Some m2. | ||
| 452 | Proof. | ||
| 453 | revert m2. | ||
| 454 | induction m1 using map_ind; intros m2 HForall2. | ||
| 455 | - unfold map_mapM. rewrite map_fold_empty. | ||
| 456 | apply map_Forall2_empty_l_L in HForall2. | ||
| 457 | by simplify_eq. | ||
| 458 | - destruct (map_Forall2_destruct _ _ _ _ _ HForall2) as | ||
| 459 | [y [m2' [HForall21 HForall22]]]. subst. | ||
| 460 | destruct (map_Forall2_insert_inv_strict _ _ _ _ _ _ H14 HForall21 HForall2) as | ||
| 461 | [Hfy HForall22]. | ||
| 462 | apply IHm1 in HForall22. | ||
| 463 | unfold map_mapM. | ||
| 464 | rewrite map_fold_insert_L; try by simplify_option_eq. | ||
| 465 | intros. | ||
| 466 | destruct y0; simplify_option_eq; try done. | ||
| 467 | destruct (f z2); simplify_option_eq. | ||
| 468 | * destruct (f z1); simplify_option_eq; try done. | ||
| 469 | f_equal. by apply insert_commute. | ||
| 470 | * destruct (f z1); by simplify_option_eq. | ||
| 471 | Qed. | ||
| 472 | |||
| 473 | Lemma map_mapM_Some_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B} | ||
| 474 | (f : A → option B) (m1 : M A) (m2 : M B) : | ||
| 475 | map_mapM f m1 = Some m2 ↔ map_Forall2 (λ x y, f x = Some y) m1 m2. | ||
| 476 | Proof. split; [apply map_mapM_Some_1_L | apply map_mapM_Some_2_L]. Qed. | ||