1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
Require Import Coq.Strings.String.
From stdpp Require Import countable fin_maps fin_map_dom.
(** Generic lemmas for finite maps and their domains *)
Lemma map_insert_empty_lookup {A} `{FinMap K M}
(i j : K) (x y : A) :
<[i := x]> (∅ : M A) !! j = Some y → i = j ∧ y = x.
Proof.
intros Hiel.
destruct (decide (i = j)).
- split; try done. simplify_eq/=.
rewrite lookup_insert in Hiel. congruence.
- rewrite lookup_insert_ne in Hiel; try done.
exfalso. eapply lookup_empty_Some, Hiel.
Qed.
Lemma map_insert_ne_inv `{FinMap K M} {A}
(m1 m2 : M A) i j x y :
i ≠ j →
<[i := x]>m1 = <[j := y]>m2 →
m2 !! i = Some x ∧ m1 !! j = Some y ∧
delete i (delete j m1) = delete i (delete j m2).
Proof.
intros Hneq Heq.
split; try split.
- rewrite <-lookup_delete_ne with (i := j) by congruence.
rewrite <-delete_insert_delete with (x := y).
rewrite <-Heq.
rewrite lookup_delete_ne by congruence.
by rewrite lookup_insert.
- rewrite <-lookup_delete_ne with (i := i) by congruence.
rewrite <-delete_insert_delete with (x := x).
rewrite Heq.
rewrite lookup_delete_ne by congruence.
by rewrite lookup_insert.
- setoid_rewrite <-delete_insert_delete with (x := x) at 1.
setoid_rewrite <-delete_insert_delete with (x := y) at 4.
rewrite <-delete_insert_ne by congruence.
by do 2 f_equal.
Qed.
Lemma map_insert_inv `{FinMap K M} {A}
(m1 m2 : M A) i x y :
<[i := x]>m1 = <[i := y]>m2 →
x = y ∧ delete i m1 = delete i m2.
Proof.
intros Heq.
split; try split.
- apply Some_inj.
replace (Some x) with (<[i := x]>m1 !! i) by apply lookup_insert.
replace (Some y) with (<[i := y]>m2 !! i) by apply lookup_insert.
by rewrite Heq.
- replace (delete i m1) with (delete i (<[i := x]>m1))
by apply delete_insert_delete.
replace (delete i m2) with (delete i (<[i := y]>m2))
by apply delete_insert_delete.
by rewrite Heq.
Qed.
Lemma fmap_insert_lookup `{FinMap K M} {A B}
(f : A → B) (m1 : M A) (m2 : M B) i x :
f <$> m1 = <[i := x]>m2 →
f <$> m1 !! i = Some x.
Proof.
intros Hmap.
rewrite <-lookup_fmap.
rewrite Hmap.
apply lookup_insert.
Qed.
Lemma map_dom_delete_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(m1 : M A) (m2 : M B) i x y :
dom (delete i m1) = dom (delete i m2) →
dom (<[i := x]>m1) = dom (<[i := y]> m2).
Proof.
intros Hdel.
setoid_rewrite <-insert_delete_insert at 1 2.
rewrite 2 dom_insert_L.
set_solver.
Qed.
Lemma map_dom_delete_insert_subseteq_L `{FinMapDom K M D} `{!LeibnizEquiv D}
{A B} (m1 : M A) (m2 : M B) i x y :
dom (delete i m1) ⊆ dom (delete i m2) →
dom (<[i := x]>m1) ⊆ dom (<[i := y]> m2).
Proof.
intros Hdel.
setoid_rewrite <-insert_delete_insert at 1 2.
rewrite 2 dom_insert_L.
set_solver.
Qed.
Lemma map_dom_empty_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(m : M A) : dom (∅ : M A) = dom m → m = ∅.
Proof.
intros Hdom.
rewrite dom_empty_L in Hdom.
symmetry in Hdom.
by apply dom_empty_inv_L.
Qed.
Lemma map_dom_insert_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(i : K) (x : A) (m1 m2 : M A) :
dom (<[i := x]>m1) = dom m2 →
dom (delete i m1) = dom (delete i m2) ∧ i ∈ dom m2.
Proof. set_solver. Qed.
(* Copied from stdpp and changed so that the value types
of m1 and m2 are decoupled *)
Lemma map_dom_subseteq_size `{FinMapDom K M D} {A B} (m1 : M A) (m2 : M B) :
dom m2 ⊆ dom m1 → size m2 ≤ size m1.
Proof.
revert m1. induction m2 as [|i x m2 ? IH] using map_ind; intros m1 Hdom.
{ rewrite map_size_empty. lia. }
rewrite dom_insert in Hdom.
assert (i ∉ dom m2) by (by apply not_elem_of_dom).
assert (i ∈ dom m1) as [x' Hx'] % elem_of_dom by set_solver.
rewrite <-(insert_delete m1 i x') by done.
rewrite !map_size_insert_None, <-Nat.succ_le_mono
by (by rewrite ?lookup_delete).
apply IH. rewrite dom_delete. set_solver.
Qed.
Lemma map_dom_empty_subset `{Countable K} `{FinMapDom K M D} {A B} (m : M A) :
dom m ⊆ dom (∅ : M B) → m = ∅.
Proof.
intros Hdom.
apply map_dom_subseteq_size in Hdom.
rewrite map_size_empty in Hdom.
inv Hdom.
by apply map_size_empty_inv.
Qed.
(** map_mapM *)
Definition map_mapM {M : Type → Type} `{MBind F} `{MRet F} `{FinMap K M} {A B}
(f : A → F B) (m : M A) : F (M B) :=
map_fold (λ i x om', m' ← om'; x' ← f x; mret $ <[i := x']>m') (mret ∅) m.
Lemma map_mapM_dom_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(f : A → option B) (m1 : M A) (m2 : M B) :
map_mapM f m1 = Some m2 → dom m1 = dom m2.
Proof.
revert m2.
induction m1 using map_ind; intros m2 HmapM.
- unfold map_mapM in HmapM. rewrite map_fold_empty in HmapM.
simplify_option_eq.
by rewrite 2 dom_empty_L.
- unfold map_mapM in HmapM.
rewrite map_fold_insert_L in HmapM.
+ simplify_option_eq.
apply IHm1 in Heqo.
rewrite 2 dom_insert_L.
by f_equal.
+ intros.
destruct y; simplify_option_eq; try done.
destruct (f z2); simplify_option_eq.
* destruct (f z1); simplify_option_eq; try done.
f_equal. by apply insert_commute.
* destruct (f z1); by simplify_option_eq.
+ done.
Qed.
Lemma map_mapM_option_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(f : A → option B) (m1 : M A) (m2 m2' : M B) (i : K) (x : A) :
m1 !! i = None →
map_mapM f (<[i := x]>m1) = Some m2 →
∃ x', f x = Some x' ∧ map_mapM f m1 = Some (delete i m2).
Proof.
intros Helem HmapM.
unfold map_mapM in HmapM.
rewrite map_fold_insert_L in HmapM.
- simplify_option_eq.
exists H15.
split; try done.
rewrite delete_insert.
apply Heqo.
apply map_mapM_dom_L in Heqo.
apply not_elem_of_dom in Helem.
apply not_elem_of_dom.
set_solver.
- intros.
destruct y; simplify_option_eq; try done.
destruct (f z2); simplify_option_eq.
+ destruct (f z1); simplify_option_eq; try done.
f_equal. by apply insert_commute.
+ destruct (f z1); by simplify_option_eq.
- done.
Qed.
(** map_Forall2 *)
Definition map_Forall2 `{∀ A, Lookup K A (M A)} {A B}
(R : A → B → Prop) :=
map_relation (M := M) R (λ _, False) (λ _, False).
Global Instance map_Forall2_dec `{FinMap K M} {A B} (R : A → B → Prop)
`{∀ a b, Decision (R a b)} : RelDecision (map_Forall2 (M := M) R).
Proof. apply map_relation_dec; intros; try done; apply False_dec. Qed.
Lemma map_Forall2_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(m1 : M A) (m2 : M B) R i x y :
m1 !! i = None →
m2 !! i = None →
R x y →
map_Forall2 R m1 m2 →
map_Forall2 R (<[i := x]>m1) (<[i := y]>m2).
Proof.
unfold map_Forall2, map_relation, option_relation.
intros Him1 Him2 HR HForall2 j.
destruct (decide (i = j)).
+ simplify_option_eq. by rewrite 2 lookup_insert.
+ rewrite 2 lookup_insert_ne by done. apply HForall2.
Qed.
Lemma map_Forall2_insert_weak `{FinMap K M} {A B}
(m1 : M A) (m2 : M B) R i x y :
R x y →
map_Forall2 R (delete i m1) (delete i m2) →
map_Forall2 R (<[i := x]>m1) (<[i := y]>m2).
Proof.
unfold map_Forall2, map_relation, option_relation.
intros HR HForall2 j.
destruct (decide (i = j)).
- simplify_option_eq. by rewrite 2 lookup_insert.
- rewrite 2 lookup_insert_ne by done.
rewrite <-lookup_delete_ne with (i := i) by done.
replace (m2 !! j) with (delete i m2 !! j); try by apply lookup_delete_ne.
apply HForall2.
Qed.
Lemma map_Forall2_destruct `{FinMap K M} {A B}
(m1 : M A) (m2 : M B) R i x :
map_Forall2 R (<[i := x]>m1) m2 →
∃ y m2', m2' !! i = None ∧ m2 = <[i := y]>m2'.
Proof.
intros HForall2.
unfold map_Forall2, map_relation, option_relation in HForall2.
pose proof (HForall2 i). clear HForall2.
case_match.
- case_match; try done.
exists b, (delete i m2).
split.
* apply lookup_delete.
* by rewrite insert_delete_insert, insert_id.
- case_match; try done.
by rewrite lookup_insert in H8.
Qed.
Lemma map_Forall2_insert_inv `{FinMap K M} {A B}
(m1 : M A) (m2 : M B) R i x y :
map_Forall2 R (<[i := x]>m1) (<[i := y]>m2) →
R x y ∧ map_Forall2 R (delete i m1) (delete i m2).
Proof.
intros HForall2.
unfold map_Forall2, map_relation, option_relation in HForall2.
pose proof (HForall2 i).
case_match.
- case_match; try done.
rewrite lookup_insert in H8. rewrite lookup_insert in H9.
simplify_eq/=. split; try done.
unfold map_Forall2, map_relation, option_relation.
intros j.
destruct (decide (i = j)).
+ simplify_option_eq.
case_match.
* by rewrite lookup_delete in H8.
* case_match; [|done].
by rewrite lookup_delete in H9.
+ case_match; case_match;
rewrite lookup_delete_ne in H8 by done;
rewrite lookup_delete_ne in H9 by done;
pose proof (HForall2 j);
case_match; case_match; try done;
rewrite lookup_insert_ne in H11 by done;
rewrite lookup_insert_ne in H12 by done;
by simplify_eq/=.
- by rewrite lookup_insert in H8.
Qed.
Lemma map_Forall2_insert_inv_strict `{FinMap K M} {A B}
(m1 : M A) (m2 : M B) R i x y :
m1 !! i = None →
m2 !! i = None →
map_Forall2 R (<[i := x]>m1) (<[i := y]>m2) →
R x y ∧ map_Forall2 R m1 m2.
Proof.
intros Him1 Him2 HForall2.
apply map_Forall2_insert_inv in HForall2 as [HPixy HForall2].
split; try done.
apply delete_notin in Him1, Him2.
by rewrite Him1, Him2 in HForall2.
Qed.
Lemma map_Forall2_dom_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(R : A → B → Prop) (m1 : M A) (m2 : M B) :
map_Forall2 R m1 m2 → dom m1 = dom m2.
Proof.
revert m2.
induction m1 using map_ind; intros m2.
- intros HForall2.
destruct m2 using map_ind; [set_solver|].
unfold map_Forall2, map_relation, option_relation in HForall2.
pose proof (HForall2 i). by rewrite lookup_empty, lookup_insert in H15.
- intros HForall2.
apply map_Forall2_destruct in HForall2 as Hm2.
destruct Hm2 as [y [m2' [Hm21 Hm22]]]. simplify_eq/=.
apply map_Forall2_insert_inv_strict in HForall2 as [_ HForall2]; try done.
set_solver.
Qed.
Lemma map_Forall2_empty_l_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(R : A → B → Prop) (m2 : M B) :
map_Forall2 R ∅ m2 → m2 = ∅.
Proof.
intros HForall2.
apply map_Forall2_dom_L in HForall2 as Hdom.
rewrite dom_empty_L in Hdom.
symmetry in Hdom.
by apply dom_empty_inv_L in Hdom.
Qed.
Lemma map_Forall2_empty_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(R : A → B → Prop) (m1 : M A) :
map_Forall2 R m1 ∅ → m1 = ∅.
Proof.
intros HForall2.
apply map_Forall2_dom_L in HForall2 as Hdom.
rewrite dom_empty_L in Hdom.
by apply dom_empty_inv_L in Hdom.
Qed.
Lemma map_Forall2_empty `{FinMap K M} {A B} (R : A → B → Prop):
map_Forall2 R (∅ : M A) (∅ : M B).
Proof.
unfold map_Forall2, map_relation.
intros i. by rewrite 2 lookup_empty.
Qed.
Lemma map_Forall2_impl_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(R1 R2 : A → B → Prop) :
(∀ x y, R1 x y → R2 x y) →
∀ (m1 : M A) (m2 : M B),
map_Forall2 R1 m1 m2 → map_Forall2 R2 m1 m2.
Proof.
intros HR1R2 ?? HForall2.
unfold map_Forall2, map_relation, option_relation in *.
intros j. pose proof (HForall2 j). clear HForall2.
case_match; case_match; try done.
by apply HR1R2.
Qed.
Lemma map_Forall2_fmap_r_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B C}
(R : A → C → Prop) (m1 : M A) (m2 : M B) (f : B → C) :
map_Forall2 R m1 (f <$> m2) → map_Forall2 (λ x y, R x (f y)) m1 m2.
Proof.
intros HForall2.
unfold map_Forall2, map_relation, option_relation in *.
intros j. pose proof (HForall2 j). clear HForall2.
case_match; case_match; try done; case_match;
rewrite lookup_fmap in H16; rewrite H17 in H16; by simplify_eq/=.
Qed.
Lemma map_Forall2_eq_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(m1 m2 : M A) :
m1 = m2 ↔ map_Forall2 (=) m1 m2.
Proof.
split; revert m2.
- induction m1 using map_ind; intros m2 Heq; inv Heq.
+ apply map_Forall2_empty.
+ apply map_Forall2_insert_L; try done. by apply IHm1.
- induction m1 using map_ind; intros m2 HForall2.
+ by apply map_Forall2_empty_l_L in HForall2.
+ apply map_Forall2_destruct in HForall2 as Hm.
destruct Hm as [y [m2' [Him2' Heqm2]]]. subst.
apply map_Forall2_insert_inv in HForall2 as [Heqxy HForall2].
rewrite 2 delete_notin in HForall2 by done.
apply IHm1 in HForall2. by subst.
Qed.
Lemma map_insert_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(i : K) (x y : A) (m1 m2 : M A) :
x = y →
delete i m1 = delete i m2 →
<[i := x]>m1 = <[i := y]>m2.
Proof.
intros Heq Hdel.
apply map_Forall2_eq_L.
eapply map_Forall2_insert_weak; [done|].
by apply map_Forall2_eq_L.
Qed.
Lemma map_insert_rev_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(m1 m2 : M A) (i : K) (x y : A) :
<[i := x]>m1 = <[i := y]>m2 → x = y ∧ delete i m1 = delete i m2.
Proof.
intros Heq. apply map_Forall2_eq_L in Heq.
apply map_Forall2_insert_inv in Heq as [Heq1 Heq2].
by apply map_Forall2_eq_L in Heq2.
Qed.
Lemma map_insert_rev_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(m1 m2 : M A) (i : K) (x y : A) :
<[i := x]>m1 = <[i := y]>m2 → x = y.
Proof. apply map_insert_rev_L. Qed.
Lemma map_insert_rev_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A}
(m1 m2 : M A) (i : K) (x y : A) :
<[i := x]>m1 = <[i := y]>m2 → delete i m1 = delete i m2.
Proof. apply map_insert_rev_L. Qed.
Lemma map_Forall2_alt_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(R : A → B → Prop) (m1 : M A) (m2 : M B) :
map_Forall2 R m1 m2 ↔
dom m1 = dom m2 ∧ ∀ i x y, m1 !! i = Some x → m2 !! i = Some y → R x y.
Proof.
split.
- intros HForall2.
split.
+ by apply map_Forall2_dom_L in HForall2.
+ intros i x y Him1 Him2.
unfold map_Forall2, map_relation, option_relation in HForall2.
pose proof (HForall2 i). clear HForall2.
by simplify_option_eq.
- intros [Hdom HForall2].
unfold map_Forall2, map_relation, option_relation.
intros j.
case_match; case_match; try done.
+ by eapply HForall2.
+ apply mk_is_Some in H14.
apply not_elem_of_dom in H15.
apply elem_of_dom in H14.
set_solver.
+ apply not_elem_of_dom in H14.
apply mk_is_Some in H15.
apply elem_of_dom in H15.
set_solver.
Qed.
(** Relation between map_mapM and map_Forall2 *)
Lemma map_mapM_Some_1_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(f : A → option B) (m1 : M A) (m2 : M B) :
map_mapM f m1 = Some m2 → map_Forall2 (λ x y, f x = Some y) m1 m2.
Proof.
revert m1 m2 f.
induction m1 using map_ind.
- intros m2 f Hmap_mapM.
unfold map_mapM in Hmap_mapM.
rewrite map_fold_empty in Hmap_mapM.
simplify_option_eq. apply map_Forall2_empty.
- intros m2 f Hmap_mapM.
csimpl in Hmap_mapM.
unfold map_mapM in Hmap_mapM.
csimpl in Hmap_mapM.
rewrite map_fold_insert_L in Hmap_mapM.
+ simplify_option_eq.
apply IHm1 in Heqo.
apply map_Forall2_insert_L; try done.
apply not_elem_of_dom in H14.
apply not_elem_of_dom.
apply map_Forall2_dom_L in Heqo.
set_solver.
+ intros.
destruct y; simplify_option_eq; try done.
destruct (f z2); simplify_option_eq.
* destruct (f z1); simplify_option_eq; try done.
f_equal. by apply insert_commute.
* destruct (f z1); by simplify_option_eq.
+ done.
Qed.
Lemma map_mapM_Some_2_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(f : A → option B) (m1 : M A) (m2 : M B) :
map_Forall2 (λ x y, f x = Some y) m1 m2 → map_mapM f m1 = Some m2.
Proof.
revert m2.
induction m1 using map_ind; intros m2 HForall2.
- unfold map_mapM. rewrite map_fold_empty.
apply map_Forall2_empty_l_L in HForall2.
by simplify_eq.
- destruct (map_Forall2_destruct _ _ _ _ _ HForall2) as
[y [m2' [HForall21 HForall22]]]. subst.
destruct (map_Forall2_insert_inv_strict _ _ _ _ _ _ H14 HForall21 HForall2) as
[Hfy HForall22].
apply IHm1 in HForall22.
unfold map_mapM.
rewrite map_fold_insert_L; try by simplify_option_eq.
intros.
destruct y0; simplify_option_eq; try done.
destruct (f z2); simplify_option_eq.
* destruct (f z1); simplify_option_eq; try done.
f_equal. by apply insert_commute.
* destruct (f z1); by simplify_option_eq.
Qed.
Lemma map_mapM_Some_L `{FinMapDom K M D} `{!LeibnizEquiv D} {A B}
(f : A → option B) (m1 : M A) (m2 : M B) :
map_mapM f m1 = Some m2 ↔ map_Forall2 (λ x y, f x = Some y) m1 m2.
Proof. split; [apply map_mapM_Some_1_L | apply map_mapM_Some_2_L]. Qed.
|