diff options
author | Rutger Broekhoff | 2025-07-07 21:52:08 +0200 |
---|---|---|
committer | Rutger Broekhoff | 2025-07-07 21:52:08 +0200 |
commit | ba61dfd69504ec6263a9dee9931d93adeb6f3142 (patch) | |
tree | d6c9b78e50eeab24e0c1c09ab45909a6ae3fd5db /theories/dynlang/interp_proofs.v | |
download | verified-dyn-lang-interp-ba61dfd69504ec6263a9dee9931d93adeb6f3142.tar.gz verified-dyn-lang-interp-ba61dfd69504ec6263a9dee9931d93adeb6f3142.zip |
Initialize repository
Diffstat (limited to 'theories/dynlang/interp_proofs.v')
-rw-r--r-- | theories/dynlang/interp_proofs.v | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/theories/dynlang/interp_proofs.v b/theories/dynlang/interp_proofs.v new file mode 100644 index 0000000..f18a91c --- /dev/null +++ b/theories/dynlang/interp_proofs.v | |||
@@ -0,0 +1,426 @@ | |||
1 | From mininix Require Export dynlang.interp. | ||
2 | From stdpp Require Import options. | ||
3 | |||
4 | Module Import dynlang. | ||
5 | Export dynlang. | ||
6 | |||
7 | Lemma interp_S n : interp (S n) = interp1 (interp n). | ||
8 | Proof. done. Qed. | ||
9 | |||
10 | Fixpoint thunk_size (t : thunk) : nat := | ||
11 | S (map_sum_with thunk_size (thunk_env t)). | ||
12 | Definition env_size (E : env) : nat := | ||
13 | map_sum_with thunk_size E. | ||
14 | |||
15 | Lemma env_ind (P : env → Prop) : | ||
16 | (∀ E, map_Forall (λ i, P ∘ thunk_env) E → P E) → | ||
17 | ∀ E : env, P E. | ||
18 | Proof. | ||
19 | intros Pbs E. | ||
20 | induction (Nat.lt_wf_0_projected env_size E) as [E _ IH]. | ||
21 | apply Pbs, map_Forall_lookup=> y [E' e'] Hy. | ||
22 | apply (map_sum_with_lookup_le thunk_size) in Hy. | ||
23 | apply IH. by rewrite -Nat.le_succ_l. | ||
24 | Qed. | ||
25 | |||
26 | (** Correspondence to operational semantics *) | ||
27 | Definition subst_env' (thunk_to_expr : thunk → expr) (E : env) : expr → expr := | ||
28 | subst (thunk_to_expr <$> E). | ||
29 | Fixpoint thunk_to_expr (t : thunk) : expr := | ||
30 | subst_env' thunk_to_expr (thunk_env t) (thunk_expr t). | ||
31 | Notation subst_env := (subst_env' thunk_to_expr). | ||
32 | |||
33 | Lemma subst_env_eq e E : | ||
34 | subst_env E e = | ||
35 | match e with | ||
36 | | EString s => EString s | ||
37 | | EId ds e => EId ((thunk_to_expr <$> E) ∪ ds) (subst_env E e) | ||
38 | | EAbs ex e => EAbs (subst_env E ex) (subst_env E e) | ||
39 | | EApp e1 e2 => EApp (subst_env E e1) (subst_env E e2) | ||
40 | end. | ||
41 | Proof. by destruct e. Qed. | ||
42 | |||
43 | Lemma subst_env_alt E e : subst_env E e = subst (thunk_to_expr <$> E) e. | ||
44 | Proof. done. Qed. | ||
45 | |||
46 | (* Use the unfolding lemmas, don't rely on conversion *) | ||
47 | Opaque subst_env'. | ||
48 | |||
49 | Definition val_to_expr (v : val) : expr := | ||
50 | match v with | ||
51 | | VString s => EString s | ||
52 | | VClo x E e => EAbs (EString x) (subst_env E e) | ||
53 | end. | ||
54 | |||
55 | Lemma val_final v : final (val_to_expr v). | ||
56 | Proof. by destruct v. Qed. | ||
57 | |||
58 | Lemma subst_empty e : subst ∅ e = e. | ||
59 | Proof. induction e; f_equal/=; auto. by rewrite left_id_L. Qed. | ||
60 | |||
61 | Lemma subst_env_empty e : subst_env ∅ e = e. | ||
62 | Proof. rewrite subst_env_alt. apply subst_empty. Qed. | ||
63 | |||
64 | Lemma interp_le {n1 n2 E e mv} : | ||
65 | interp n1 E e = Res mv → n1 ≤ n2 → interp n2 E e = Res mv. | ||
66 | Proof. | ||
67 | revert n2 E e mv. | ||
68 | induction n1 as [|n1 IH]; intros [|n2] E e mv He ?; [by (done || lia)..|]. | ||
69 | rewrite interp_S in He; rewrite interp_S; destruct e; | ||
70 | repeat match goal with | ||
71 | | _ => case_match | ||
72 | | H : context [(_ <$> ?mx)] |- _ => destruct mx eqn:?; simplify_res | ||
73 | | H : ?r ≫= _ = _ |- _ => destruct r as [[]|] eqn:?; simplify_res | ||
74 | | H : _ <$> ?r = _ |- _ => destruct r as [[]|] eqn:?; simplify_res | ||
75 | | |- interp ?n ?E ?e ≫= _ = _ => erewrite (IH n E e) by (done || lia) | ||
76 | | _ => progress simplify_res | ||
77 | | _ => progress simplify_option_eq | ||
78 | end; eauto with lia. | ||
79 | Qed. | ||
80 | |||
81 | Lemma interp_agree {n1 n2 E e mv1 mv2} : | ||
82 | interp n1 E e = Res mv1 → interp n2 E e = Res mv2 → mv1 = mv2. | ||
83 | Proof. | ||
84 | intros He1 He2. apply (inj Res). destruct (total (≤) n1 n2). | ||
85 | - rewrite -He2. symmetry. eauto using interp_le. | ||
86 | - rewrite -He1. eauto using interp_le. | ||
87 | Qed. | ||
88 | |||
89 | Lemma subst_env_union E1 E2 e : | ||
90 | subst_env (E1 ∪ E2) e = subst_env E1 (subst_env E2 e). | ||
91 | Proof. | ||
92 | revert E1 E2. induction e; intros E1 E2; rewrite subst_env_eq /=. | ||
93 | - done. | ||
94 | - rewrite !(subst_env_eq (EId _ _)) IHe. f_equal. | ||
95 | by rewrite assoc_L map_fmap_union. | ||
96 | - rewrite !(subst_env_eq (EAbs _ _)) /=. f_equal; auto. | ||
97 | - rewrite !(subst_env_eq (EApp _ _)) /=. f_equal; auto. | ||
98 | Qed. | ||
99 | |||
100 | Lemma subst_env_insert E x e t : | ||
101 | subst_env (<[x:=t]> E) e = subst {[x:=thunk_to_expr t]} (subst_env E e). | ||
102 | Proof. | ||
103 | rewrite insert_union_singleton_l subst_env_union subst_env_alt. | ||
104 | by rewrite map_fmap_singleton. | ||
105 | Qed. | ||
106 | |||
107 | Lemma subst_env_insert_eq e1 e2 E1 E2 x E1' E2' e1' e2' : | ||
108 | subst_env E1 e1 = subst_env E2 e2 → | ||
109 | subst_env E1' e1' = subst_env E2' e2' → | ||
110 | subst_env (<[x:=Thunk E1' e1']> E1) e1 = subst_env (<[x:=Thunk E2' e2']> E2) e2. | ||
111 | Proof. intros He He'. by rewrite !subst_env_insert //= He' He. Qed. | ||
112 | |||
113 | Lemma interp_proper n E1 E2 e1 e2 mv : | ||
114 | subst_env E1 e1 = subst_env E2 e2 → | ||
115 | interp n E1 e1 = Res mv → | ||
116 | ∃ mw m, interp m E2 e2 = Res mw ∧ | ||
117 | val_to_expr <$> mv = val_to_expr <$> mw. | ||
118 | Proof. | ||
119 | revert n E1 E2 e1 e2 mv. induction n as [|n IHn]; [done|]. | ||
120 | intros E1 E2 e1 e2 mv Hsubst Hinterp. | ||
121 | rewrite 2!subst_env_eq in Hsubst. | ||
122 | rewrite interp_S in Hinterp. destruct e1, e2; simplify_res; try done. | ||
123 | - eexists (Some (VString _)), 1. by rewrite interp_S. | ||
124 | - destruct (interp n _ e1) as [mv1|] eqn:Hinterp'; simplify_eq/=. | ||
125 | eapply IHn in Hinterp' as (mw1 & m1 & Hinterp1 & ?); last done. | ||
126 | destruct mv1 as [v1|], mw1 as [w1|]; simplify_res; last first. | ||
127 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
128 | destruct (maybe VString v1) as [x|] eqn:Hv1; | ||
129 | simplify_res; last first. | ||
130 | { exists None, (S m1). split; [|done]. rewrite interp_S /= Hinterp1 /=. | ||
131 | destruct v1, w1; repeat destruct select base_lit; by simplify_eq/=. } | ||
132 | destruct v1, w1; repeat destruct select base_lit; simplify_eq/=. | ||
133 | assert (∀ (ds : stringmap expr) (E : env) x, | ||
134 | thunk_to_expr <$> (E !! x) ∪ (Thunk ∅ <$> ds !! x) | ||
135 | = ((thunk_to_expr <$> E) ∪ ds) !! x) as HE. | ||
136 | { intros ds' E x. rewrite lookup_union lookup_fmap. | ||
137 | repeat destruct (_ !! _); f_equal/=; by rewrite subst_env_empty. } | ||
138 | pose proof (f_equal (.!! s0) Hsubst) as Hs. rewrite -!HE {HE} in Hs. | ||
139 | destruct (E1 !! s0 ∪ _) as [[E1' e1']|], | ||
140 | (E2 !! s0 ∪ _) as [[E2' e2']|] eqn:HE2; simplify_res; last first. | ||
141 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. by rewrite HE2. } | ||
142 | eapply IHn in Hinterp as (mw & m2 & Hinterp2 & ?); [|by eauto..]. | ||
143 | exists mw, (S (m1 `max` m2)). split; [|done]. rewrite interp_S /=. | ||
144 | rewrite (interp_le Hinterp1) /=; last lia. rewrite HE2 /=. | ||
145 | eauto using interp_le with lia. | ||
146 | - destruct (interp n _ _) as [mv1|] eqn:Hinterp'; simplify_eq/=. | ||
147 | eapply IHn in Hinterp' as (mw1 & m1 & Hinterp1 & ?); last done. | ||
148 | destruct mv1 as [v1|], mw1 as [w1|]; simplify_res; last first. | ||
149 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
150 | destruct (maybe VString _) eqn:Hstring; simplify_res; last first. | ||
151 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
152 | by assert (maybe VString w1 = None) as -> by (by destruct v1, w1). } | ||
153 | destruct v1, w1; simplify_eq/=. | ||
154 | eexists (Some (VClo _ _ _)), (S m1). | ||
155 | rewrite interp_S /= Hinterp1 /=. split; [done|]. by do 2 f_equal/=. | ||
156 | - destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
157 | eapply IHn in Hinterp' as (mw' & m1 & Hinterp1 & ?); last done. | ||
158 | destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. | ||
159 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
160 | destruct (maybe3 VClo _) eqn:Hclo; simplify_res; last first. | ||
161 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
162 | by assert (maybe3 VClo w' = None) as -> by (by destruct v', w'). } | ||
163 | destruct v', w'; simplify_eq/=. | ||
164 | eapply IHn with (E2 := <[x0:=Thunk E2 e2_2]> E0) in Hinterp | ||
165 | as (w & m2 & Hinterp2 & ?); last by apply subst_env_insert_eq. | ||
166 | exists w, (S (m1 `max` m2)). rewrite interp_S /=. | ||
167 | rewrite (interp_le Hinterp1) /=; last lia. | ||
168 | rewrite (interp_le Hinterp2) /=; last lia. done. | ||
169 | Qed. | ||
170 | |||
171 | Lemma subst_as_subst_env x e1 e2 : | ||
172 | subst {[x:=e2]} e1 = subst_env (<[x:=Thunk ∅ e2]> ∅) e1. | ||
173 | Proof. rewrite subst_env_insert //= !subst_env_empty //. Qed. | ||
174 | |||
175 | Lemma interp_subst n x e1 e2 mv : | ||
176 | interp n ∅ (subst {[x:=e2]} e1) = Res mv → | ||
177 | ∃ mw m, interp m (<[x:=Thunk ∅ e2]> ∅) e1 = Res mw ∧ | ||
178 | val_to_expr <$> mv = val_to_expr <$> mw. | ||
179 | Proof. | ||
180 | apply interp_proper. | ||
181 | by rewrite subst_env_empty subst_as_subst_env. | ||
182 | Qed. | ||
183 | |||
184 | Lemma interp_step e1 e2 n mv : | ||
185 | e1 --> e2 → | ||
186 | interp n ∅ e2 = Res mv → | ||
187 | ∃ mw m, interp m ∅ e1 = Res mw ∧ val_to_expr <$> mv = val_to_expr <$> mw. | ||
188 | Proof. | ||
189 | intros Hstep. revert mv n. | ||
190 | induction Hstep; intros mv n Hinterp. | ||
191 | - apply interp_subst in Hinterp as (w & [|m] & Hinterp & Hv); | ||
192 | simplify_eq/=; [|done..]. | ||
193 | exists w, (S (S (S m))). rewrite !interp_S /= -!interp_S. | ||
194 | eauto using interp_le with lia. | ||
195 | - exists mv, (S (S n)). rewrite !interp_S /= -interp_S. | ||
196 | rewrite lookup_empty left_id_L H /=. eauto using interp_le with lia. | ||
197 | - destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. | ||
198 | destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
199 | apply IHHstep in Hinterp' as (mw' & m1 & Hinterp1 & ?); simplify_res. | ||
200 | destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. | ||
201 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
202 | destruct (maybe VString _) eqn:Hstring; simplify_res; last first. | ||
203 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
204 | by assert (maybe VString w' = None) as -> by (by destruct v', w'). } | ||
205 | destruct v', w'; simplify_eq/=. | ||
206 | eexists (Some (VClo _ _ _)), (S m1). rewrite !interp_S /=. | ||
207 | rewrite (interp_le Hinterp1) /=; last lia. done. | ||
208 | - destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. | ||
209 | destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
210 | apply IHHstep in Hinterp' as (mw' & m1 & Hinterp1 & ?); simplify_res. | ||
211 | destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. | ||
212 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
213 | destruct (maybe3 VClo _) eqn:Hclo; simplify_res; last first. | ||
214 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
215 | by assert (maybe3 VClo w' = None) as -> by (by destruct v', w'). } | ||
216 | destruct v', w'; simplify_eq/=. | ||
217 | eapply interp_proper in Hinterp as (mw & m2 & Hinterp2 & Hv); | ||
218 | last apply subst_env_insert_eq; try done. | ||
219 | exists mw, (S (m1 `max` m2)). rewrite !interp_S /=. | ||
220 | rewrite (interp_le Hinterp1) /=; last lia. | ||
221 | by rewrite (interp_le Hinterp2) /=; last lia. | ||
222 | - destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. | ||
223 | destruct (interp n _ e1') as [mv1|] eqn:Hinterp1; simplify_eq/=. | ||
224 | apply IHHstep in Hinterp1 as (mw1 & m & Hinterp1 & Hw1). | ||
225 | destruct mv1 as [v1|], mw1 as [w1|]; simplify_res; last first. | ||
226 | { exists None, (S m). by rewrite interp_S /= Hinterp1. } | ||
227 | exists mv, (S (n `max` m)). split; [|done]. | ||
228 | rewrite interp_S /= (interp_le Hinterp1) /=; last lia. | ||
229 | assert (maybe VString w1 = maybe VString v1) as ->. | ||
230 | { destruct v1, w1; naive_solver. } | ||
231 | destruct (maybe VString v1); simplify_res; [|done]. | ||
232 | destruct (_ ∪ _); simplify_res; eauto using interp_le with lia. | ||
233 | Qed. | ||
234 | |||
235 | Lemma final_interp e : | ||
236 | final e → | ||
237 | ∃ w m, interp m ∅ e = mret w ∧ e = val_to_expr w. | ||
238 | Proof. | ||
239 | induction e as [| |[]|]; inv 1. | ||
240 | - eexists (VString _), 1. by rewrite interp_S /=. | ||
241 | - eexists (VClo _ _ _), 2. rewrite interp_S /=. split; [done|]. | ||
242 | by rewrite subst_env_empty. | ||
243 | Qed. | ||
244 | |||
245 | Lemma red_final_interp e : | ||
246 | red step e ∨ final e ∨ ∃ m, interp m ∅ e = mfail. | ||
247 | Proof. | ||
248 | induction e. | ||
249 | - (* ENat *) right; left. constructor. | ||
250 | - (* EId *) destruct IHe as [[??]|[Hfinal|[m Hinterp]]]. | ||
251 | + left. by repeat econstructor. | ||
252 | + apply final_interp in Hfinal as (w & m & Hinterp & ->). | ||
253 | destruct (maybe VString w) as [x|] eqn:Hw; last first. | ||
254 | { do 2 right. eexists (S m). rewrite interp_S /= Hinterp /=. | ||
255 | by rewrite Hw. } | ||
256 | destruct w; simplify_eq/=. | ||
257 | destruct (ds !! x) as [e|] eqn:Hx; last first. | ||
258 | { do 2 right. eexists (S m). rewrite interp_S /= Hinterp /=. | ||
259 | by rewrite Hx. } | ||
260 | left. by repeat econstructor. | ||
261 | + do 2 right. exists (S m). rewrite interp_S /= Hinterp. done. | ||
262 | - (* EAbs *) destruct IHe1 as [[??]|[Hfinal|[m Hinterp]]]. | ||
263 | + left. by repeat econstructor. | ||
264 | + apply final_interp in Hfinal as (w & m & Hinterp & ->). | ||
265 | destruct (maybe VString w) as [x|] eqn:Hw; last first. | ||
266 | { do 2 right. eexists (S m). rewrite interp_S /= Hinterp /=. | ||
267 | by rewrite Hw. } | ||
268 | destruct w; naive_solver. | ||
269 | + do 2 right. exists (S m). rewrite interp_S /= Hinterp. done. | ||
270 | - (* EApp *) destruct IHe1 as [[??]|[Hfinal|[m Hinterp]]]. | ||
271 | + left. by repeat econstructor. | ||
272 | + apply final_interp in Hfinal as (w & m & Hinterp & ->). | ||
273 | destruct (maybe3 VClo w) eqn:Hw. | ||
274 | { destruct w; simplify_eq/=. left. by repeat econstructor. } | ||
275 | do 2 right. exists (S m). by rewrite interp_S /= Hinterp /= Hw. | ||
276 | + do 2 right. exists (S m). by rewrite interp_S /= Hinterp. | ||
277 | Qed. | ||
278 | |||
279 | Lemma interp_complete e1 e2 : | ||
280 | e1 -->* e2 → | ||
281 | nf step e2 → | ||
282 | ∃ mw m, interp m ∅ e1 = Res mw ∧ | ||
283 | if mw is Some w then e2 = val_to_expr w else ¬final e2. | ||
284 | Proof. | ||
285 | intros Hsteps Hnf. induction Hsteps as [e|e1 e2 e3 Hstep _ IH]. | ||
286 | { destruct (red_final_interp e) as [?|[Hfinal|[m Hinterp]]]; [done|..]. | ||
287 | - apply final_interp in Hfinal as (w & m & ? & ?). | ||
288 | by exists (Some w), m. | ||
289 | - exists None, m. split; [done|]. intros Hfinal. | ||
290 | apply final_interp in Hfinal as (w & m' & ? & _). | ||
291 | by assert (mfail = mret w) by eauto using interp_agree. } | ||
292 | destruct IH as (mw & m & Hinterp & ?); try done. | ||
293 | eapply interp_step in Hinterp as (mw' & m' & ? & ?); last done. | ||
294 | destruct mw, mw'; naive_solver. | ||
295 | Qed. | ||
296 | |||
297 | Lemma interp_complete_ret e1 e2 : | ||
298 | e1 -->* e2 → final e2 → | ||
299 | ∃ w m, interp m ∅ e1 = mret w ∧ e2 = val_to_expr w. | ||
300 | Proof. | ||
301 | intros Hsteps Hfinal. apply interp_complete in Hsteps | ||
302 | as ([w|] & m & ? & ?); naive_solver eauto using final_nf. | ||
303 | Qed. | ||
304 | Lemma interp_complete_fail e1 e2 : | ||
305 | e1 -->* e2 → nf step e2 → ¬final e2 → | ||
306 | ∃ m, interp m ∅ e1 = mfail. | ||
307 | Proof. | ||
308 | intros Hsteps Hnf Hforce. | ||
309 | apply interp_complete in Hsteps as ([w|] & m & ? & ?); simplify_eq/=; try by eauto. | ||
310 | destruct Hforce. apply val_final. | ||
311 | Qed. | ||
312 | |||
313 | Lemma interp_sound_open E e n mv : | ||
314 | interp n E e = Res mv → | ||
315 | ∃ e', subst_env E e -->* e' ∧ | ||
316 | if mv is Some v then e' = val_to_expr v else stuck e'. | ||
317 | Proof. | ||
318 | revert E e mv. | ||
319 | induction n as [|n IH]; intros E e mv Hinterp; first done. | ||
320 | rewrite subst_env_eq. rewrite interp_S in Hinterp. | ||
321 | destruct e; simplify_res. | ||
322 | - (* EString *) by eexists. | ||
323 | - (* EId *) | ||
324 | destruct (interp _ _ _) as [mv1|] eqn:Hinterp1; simplify_res. | ||
325 | apply IH in Hinterp1 as (e1' & Hsteps1 & He1'). | ||
326 | destruct mv1 as [v1|]; simplify_res; last first. | ||
327 | { eexists; split; [by eapply SId_rtc|]. split; [|inv 1]. | ||
328 | intros [??]. destruct He1' as [Hnf []]. | ||
329 | inv_step; simpl; eauto. destruct Hnf; eauto. } | ||
330 | destruct (maybe VString _) as [x|] eqn:Hv1; simplify_res; last first. | ||
331 | { eexists; split; [by eapply SId_rtc|]. split; [|inv 1]. | ||
332 | intros [??]. destruct v1; inv_step. } | ||
333 | destruct v1; simplify_eq/=. | ||
334 | assert (thunk_to_expr <$> (E !! x) ∪ (Thunk ∅ <$> ds !! x) | ||
335 | = ((thunk_to_expr <$> E) ∪ ds) !! x). | ||
336 | { rewrite lookup_union lookup_fmap. | ||
337 | repeat destruct (_ !! _); f_equal/=; by rewrite subst_env_empty. } | ||
338 | destruct (_ ∪ _) as [[E' e']|] eqn:Hx; simplify_res. | ||
339 | * apply IH in Hinterp as (e'' & Hsteps & He''). | ||
340 | exists e''; split; [|done]. etrans; [by eapply SId_rtc|]. | ||
341 | eapply rtc_l; [|done]. by econstructor. | ||
342 | * eexists; split; [by eapply SId_rtc|]. split; [|inv 1]. | ||
343 | intros [? Hstep]. inv_step; simplify_eq/=; congruence. | ||
344 | - (* EAbs *) | ||
345 | destruct (interp _ _ _) as [mv1|] eqn:Hinterp1; simplify_res. | ||
346 | apply IH in Hinterp1 as (e1' & Hsteps1 & He1'). | ||
347 | destruct mv1 as [v1|]; simplify_res; last first. | ||
348 | { eexists; split; [by eapply SAbsL_rtc|]. split. | ||
349 | + intros [??]. destruct He1' as [Hnf []]. | ||
350 | inv_step; simpl; eauto. destruct Hnf; eauto. | ||
351 | + intros ?. destruct He1' as [_ []]. by destruct e1'. } | ||
352 | eexists; split; [by eapply SAbsL_rtc|]. | ||
353 | destruct (maybe VString _) as [x|] eqn:Hv1; simplify_res; last first. | ||
354 | { split; [|destruct v1; inv 1]. intros [??]. destruct v1; inv_step. } | ||
355 | by destruct v1; simplify_eq/=. | ||
356 | - (* EApp *) destruct (interp _ _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
357 | apply IH in Hinterp' as (e' & Hsteps & He'); try done. | ||
358 | destruct mv' as [v'|]; simplify_res; last first. | ||
359 | { eexists; repeat split; [by apply SAppL_rtc| |inv 1]. | ||
360 | intros [e'' Hstep]. destruct He' as [Hnf Hfinal]. | ||
361 | inv Hstep; [by destruct Hfinal; constructor|]. destruct Hnf. eauto. } | ||
362 | destruct (maybe3 VClo v') eqn:?; simplify_res; last first. | ||
363 | { eexists; repeat split; [by apply SAppL_rtc| |inv 1]. | ||
364 | intros [e'' Hstep]. inv Hstep; destruct v'; by repeat inv_step. } | ||
365 | destruct v'; simplify_res. | ||
366 | apply IH in Hinterp as (e'' & Hsteps' & He''). | ||
367 | eexists; split; [|done]. etrans; [by apply SAppL_rtc|]. | ||
368 | eapply rtc_l; first by constructor. | ||
369 | rewrite subst_env_insert // in Hsteps'. | ||
370 | Qed. | ||
371 | |||
372 | Lemma interp_sound n e mv : | ||
373 | interp n ∅ e = Res mv → | ||
374 | ∃ e', e -->* e' ∧ if mv is Some v then e' = val_to_expr v else stuck e'. | ||
375 | Proof. | ||
376 | intros Hsteps%interp_sound_open; try done. | ||
377 | by rewrite subst_env_empty in Hsteps. | ||
378 | Qed. | ||
379 | |||
380 | (** Final theorems *) | ||
381 | Theorem interp_sound_complete_ret e v : | ||
382 | (∃ w n, interp n ∅ e = mret w ∧ val_to_expr v = val_to_expr w) | ||
383 | ↔ e -->* val_to_expr v. | ||
384 | Proof. | ||
385 | split. | ||
386 | - by intros (n & w & (e' & ? & ->)%interp_sound & ->). | ||
387 | - intros Hsteps. apply interp_complete_ret in Hsteps as ([] & ? & ? & ?); | ||
388 | eauto using val_final. | ||
389 | Qed. | ||
390 | |||
391 | Theorem interp_sound_complete_ret_string e s : | ||
392 | (∃ n, interp n ∅ e = mret (VString s)) ↔ e -->* EString s. | ||
393 | Proof. | ||
394 | split. | ||
395 | - by intros [n (e' & ? & ->)%interp_sound]. | ||
396 | - intros Hsteps. apply interp_complete_ret in Hsteps as ([] & ? & ? & ?); | ||
397 | simplify_eq/=; eauto. | ||
398 | Qed. | ||
399 | |||
400 | Theorem interp_sound_complete_fail e : | ||
401 | (∃ n, interp n ∅ e = mfail) ↔ ∃ e', e -->* e' ∧ stuck e'. | ||
402 | Proof. | ||
403 | split. | ||
404 | - by intros [n ?%interp_sound]. | ||
405 | - intros (e' & Hsteps & Hnf & Hforced). by eapply interp_complete_fail. | ||
406 | Qed. | ||
407 | |||
408 | Theorem interp_sound_complete_no_fuel e : | ||
409 | (∀ n, interp n ∅ e = NoFuel) ↔ all_loop step e. | ||
410 | Proof. | ||
411 | rewrite all_loop_alt. split. | ||
412 | - intros Hnofuel e' Hsteps. | ||
413 | destruct (red_final_interp e') as [|[|He']]; [done|..]. | ||
414 | + apply interp_complete_ret in Hsteps as (w & m & Hinterp & _); last done. | ||
415 | by rewrite Hnofuel in Hinterp. | ||
416 | + apply interp_sound_complete_fail in He' as (e'' & ? & [Hnf _]). | ||
417 | destruct (interp_complete e e'') as (mv & n & Hinterp & _); [by etrans|done|]. | ||
418 | by rewrite Hnofuel in Hinterp. | ||
419 | - intros Hred n. destruct (interp n ∅ e) as [mv|] eqn:Hinterp; [|done]. | ||
420 | apply interp_sound in Hinterp as (e' & Hsteps%Hred & Hstuck). | ||
421 | destruct mv as [v|]; simplify_eq/=. | ||
422 | + apply final_nf in Hsteps as []. apply val_final. | ||
423 | + by destruct Hstuck as [[] ?]. | ||
424 | Qed. | ||
425 | |||
426 | End dynlang. | ||