diff options
Diffstat (limited to 'theories/evallang/interp_proofs.v')
-rw-r--r-- | theories/evallang/interp_proofs.v | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/theories/evallang/interp_proofs.v b/theories/evallang/interp_proofs.v new file mode 100644 index 0000000..0a26dd1 --- /dev/null +++ b/theories/evallang/interp_proofs.v | |||
@@ -0,0 +1,478 @@ | |||
1 | From mininix Require Export evallang.interp. | ||
2 | From stdpp Require Import options. | ||
3 | |||
4 | Module Import evallang. | ||
5 | Export evallang. | ||
6 | |||
7 | Lemma interp_S n : interp (S n) = interp1 (interp n). | ||
8 | Proof. done. Qed. | ||
9 | |||
10 | Fixpoint thunk_size (t : thunk) : nat := | ||
11 | S (map_sum_with thunk_size (thunk_env t)). | ||
12 | Definition env_size (E : env) : nat := | ||
13 | map_sum_with thunk_size E. | ||
14 | |||
15 | Lemma env_ind (P : env → Prop) : | ||
16 | (∀ E, map_Forall (λ i, P ∘ thunk_env) E → P E) → | ||
17 | ∀ E : env, P E. | ||
18 | Proof. | ||
19 | intros Pbs E. | ||
20 | induction (Nat.lt_wf_0_projected env_size E) as [E _ IH]. | ||
21 | apply Pbs, map_Forall_lookup=> y [E' e'] Hy. | ||
22 | apply (map_sum_with_lookup_le thunk_size) in Hy. | ||
23 | apply IH. by rewrite -Nat.le_succ_l. | ||
24 | Qed. | ||
25 | |||
26 | (** Correspondence to operational semantics *) | ||
27 | Definition subst_env' (thunk_to_expr : thunk → expr) (E : env) : expr → expr := | ||
28 | subst (thunk_to_expr <$> E). | ||
29 | Fixpoint thunk_to_expr (t : thunk) : expr := | ||
30 | subst_env' thunk_to_expr (thunk_env t) (thunk_expr t). | ||
31 | Notation subst_env := (subst_env' thunk_to_expr). | ||
32 | |||
33 | Lemma subst_env_eq e E : | ||
34 | subst_env E e = | ||
35 | match e with | ||
36 | | EString s => EString s | ||
37 | | EId ds x => EId ((thunk_to_expr <$> E !! x) ∪ ds) x | ||
38 | | EEval ds e => EEval ((thunk_to_expr <$> E) ∪ ds) (subst_env E e) | ||
39 | | EAbs ex e => EAbs (subst_env E ex) (subst_env E e) | ||
40 | | EApp e1 e2 => EApp (subst_env E e1) (subst_env E e2) | ||
41 | end. | ||
42 | Proof. destruct e; rewrite /subst_env' /= ?lookup_fmap //. Qed. | ||
43 | |||
44 | Lemma subst_env_alt E e : subst_env E e = subst (thunk_to_expr <$> E) e. | ||
45 | Proof. done. Qed. | ||
46 | |||
47 | (* Use the unfolding lemmas, don't rely on conversion *) | ||
48 | Opaque subst_env'. | ||
49 | |||
50 | Definition val_to_expr (v : val) : expr := | ||
51 | match v with | ||
52 | | VString s => EString s | ||
53 | | VClo x E e => EAbs (EString x) (subst_env E e) | ||
54 | end. | ||
55 | |||
56 | Lemma final_val_to_expr v : final (val_to_expr v). | ||
57 | Proof. by destruct v. Qed. | ||
58 | Lemma step_not_val_to_expr v e : val_to_expr v --> e → False. | ||
59 | Proof. intros []%step_not_final. apply final_val_to_expr. Qed. | ||
60 | |||
61 | Lemma subst_empty e : subst ∅ e = e. | ||
62 | Proof. induction e; f_equal/=; rewrite ?lookup_empty ?left_id_L //. Qed. | ||
63 | |||
64 | Lemma subst_env_empty e : subst_env ∅ e = e. | ||
65 | Proof. rewrite subst_env_alt. apply subst_empty. Qed. | ||
66 | |||
67 | Lemma interp_le {n1 n2 E e mv} : | ||
68 | interp n1 E e = Res mv → n1 ≤ n2 → interp n2 E e = Res mv. | ||
69 | Proof. | ||
70 | revert n2 E e mv. | ||
71 | induction n1 as [|n1 IH]; intros [|n2] E e mv He ?; [by (done || lia)..|]. | ||
72 | rewrite interp_S in He; rewrite interp_S; destruct e; | ||
73 | repeat match goal with | ||
74 | | _ => case_match | ||
75 | | H : context [(_ <$> ?mx)] |- _ => destruct mx eqn:?; simplify_res | ||
76 | | H : ?r ≫= _ = _ |- _ => destruct r as [[]|] eqn:?; simplify_res | ||
77 | | H : _ <$> ?r = _ |- _ => destruct r as [[]|] eqn:?; simplify_res | ||
78 | | |- interp ?n ?E ?e ≫= _ = _ => erewrite (IH n E e) by (done || lia) | ||
79 | | _ => progress simplify_res | ||
80 | | _ => progress simplify_option_eq | ||
81 | end; eauto with lia. | ||
82 | Qed. | ||
83 | |||
84 | Lemma interp_agree {n1 n2 E e mv1 mv2} : | ||
85 | interp n1 E e = Res mv1 → interp n2 E e = Res mv2 → mv1 = mv2. | ||
86 | Proof. | ||
87 | intros He1 He2. apply (inj Res). destruct (total (≤) n1 n2). | ||
88 | - rewrite -He2. symmetry. eauto using interp_le. | ||
89 | - rewrite -He1. eauto using interp_le. | ||
90 | Qed. | ||
91 | |||
92 | Lemma subst_env_union E1 E2 e : | ||
93 | subst_env (E1 ∪ E2) e = subst_env E1 (subst_env E2 e). | ||
94 | Proof. | ||
95 | revert E1 E2. induction e; intros E1 E2; rewrite subst_env_eq /=. | ||
96 | - done. | ||
97 | - rewrite !subst_env_eq lookup_union. by destruct (E1 !! _), (E2 !! _), ds. | ||
98 | - rewrite !(subst_env_eq (EEval _ _)) IHe. f_equal. | ||
99 | by rewrite assoc_L map_fmap_union. | ||
100 | - rewrite !(subst_env_eq (EAbs _ _)) /=. f_equal; auto. | ||
101 | - rewrite !(subst_env_eq (EApp _ _)) /=. f_equal; auto. | ||
102 | Qed. | ||
103 | |||
104 | Lemma subst_env_insert E x e t : | ||
105 | subst_env (<[x:=t]> E) e = subst {[x:=thunk_to_expr t]} (subst_env E e). | ||
106 | Proof. | ||
107 | rewrite insert_union_singleton_l subst_env_union subst_env_alt. | ||
108 | by rewrite map_fmap_singleton. | ||
109 | Qed. | ||
110 | |||
111 | Lemma subst_env_insert_eq e1 e2 E1 E2 x E1' E2' e1' e2' : | ||
112 | subst_env E1 e1 = subst_env E2 e2 → | ||
113 | subst_env E1' e1' = subst_env E2' e2' → | ||
114 | subst_env (<[x:=Thunk E1' e1']> E1) e1 = subst_env (<[x:=Thunk E2' e2']> E2) e2. | ||
115 | Proof. intros He He'. by rewrite !subst_env_insert //= He' He. Qed. | ||
116 | |||
117 | Lemma option_fmap_thunk_to_expr_Thunk (me : option expr) : | ||
118 | thunk_to_expr <$> (Thunk ∅ <$> me) = me. | ||
119 | Proof. destruct me; f_equal/=. by rewrite subst_env_empty. Qed. | ||
120 | |||
121 | Lemma map_fmap_thunk_to_expr_Thunk (es : gmap string expr) : | ||
122 | thunk_to_expr <$> (Thunk ∅ <$> es) = es. | ||
123 | Proof. | ||
124 | apply map_eq=> x. by rewrite !lookup_fmap option_fmap_thunk_to_expr_Thunk. | ||
125 | Qed. | ||
126 | |||
127 | Lemma subst_env_eval_eq E1 E2 ds1 ds2 e : | ||
128 | (thunk_to_expr <$> E1) ∪ ds1 = (thunk_to_expr <$> E2) ∪ ds2 → | ||
129 | subst_env (E1 ∪ (Thunk ∅ <$> ds1)) e = subst_env (E2 ∪ (Thunk ∅ <$> ds2)) e. | ||
130 | Proof. | ||
131 | intros HE. | ||
132 | by rewrite !subst_env_alt !map_fmap_union !map_fmap_thunk_to_expr_Thunk HE. | ||
133 | Qed. | ||
134 | |||
135 | Lemma interp_proper n E1 E2 e1 e2 mv : | ||
136 | subst_env E1 e1 = subst_env E2 e2 → | ||
137 | interp n E1 e1 = Res mv → | ||
138 | ∃ mw m, interp m E2 e2 = Res mw ∧ | ||
139 | val_to_expr <$> mv = val_to_expr <$> mw. | ||
140 | Proof. | ||
141 | revert n E1 E2 e1 e2 mv. induction n as [|n IHn]; [done|]. | ||
142 | intros E1 E2 e1 e2 mv Hsubst Hinterp. | ||
143 | rewrite 2!subst_env_eq in Hsubst. | ||
144 | rewrite interp_S in Hinterp. destruct e1, e2; simplify_res; try done. | ||
145 | - eexists (Some (VString _)), 1. by rewrite interp_S. | ||
146 | - assert (thunk_to_expr <$> E1 !! x0 ∪ (Thunk ∅ <$> ds) = | ||
147 | thunk_to_expr <$> E2 !! x0 ∪ (Thunk ∅ <$> ds0)). | ||
148 | { destruct (E1 !! _), (E2 !! _), ds, ds0; simplify_eq/=; | ||
149 | f_equal/=; by rewrite ?subst_env_empty. } | ||
150 | destruct (E1 !! x0 ∪ (Thunk ∅ <$> ds)) as [[E1' e1']|], | ||
151 | (E2 !! x0 ∪ (Thunk ∅ <$> ds0)) as [[E2' e2']|] eqn:HE2; | ||
152 | simplify_res; last first. | ||
153 | { exists None, 1. by rewrite interp_S /= HE2. } | ||
154 | eapply IHn in Hinterp as (mw & m & Hinterp2 & ?); [|by eauto..]. | ||
155 | exists mw, (S m). split; [|done]. rewrite interp_S /= HE2 /=. done. | ||
156 | - destruct (interp n _ e1) as [mv1|] eqn:Hinterp'; simplify_eq/=. | ||
157 | eapply IHn in Hinterp' as (mw1 & m1 & Hinterp1 & ?); last done. | ||
158 | destruct mv1 as [v1|], mw1 as [w1|]; simplify_res; last first. | ||
159 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
160 | destruct (maybe VString v1) as [x|] eqn:Hv1; | ||
161 | simplify_res; last first. | ||
162 | { exists None, (S m1). split; [|done]. rewrite interp_S /= Hinterp1 /=. | ||
163 | destruct v1, w1; repeat destruct select base_lit; by simplify_eq/=. } | ||
164 | destruct v1, w1; repeat destruct select base_lit; simplify_eq/=. | ||
165 | destruct (parse _) as [e|] eqn:Hparse; simplify_res; last first. | ||
166 | { exists None, (S m1). split; [|done]. rewrite interp_S /= Hinterp1 /=. | ||
167 | by rewrite Hparse. } | ||
168 | eapply IHn in Hinterp | ||
169 | as (mw & m2 & Hinterp2 & ?); last by apply subst_env_eval_eq. | ||
170 | exists mw, (S (m1 `max` m2)). split; [|done]. rewrite interp_S /=. | ||
171 | rewrite (interp_le Hinterp1) /=; last lia. rewrite Hparse /=. | ||
172 | eauto using interp_le with lia. | ||
173 | - destruct (interp n _ _) as [mv1|] eqn:Hinterp'; simplify_eq/=. | ||
174 | eapply IHn in Hinterp' as (mw1 & m1 & Hinterp1 & ?); last done. | ||
175 | destruct mv1 as [v1|], mw1 as [w1|]; simplify_res; last first. | ||
176 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
177 | destruct (maybe VString _) eqn:Hstring; simplify_res; last first. | ||
178 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
179 | by assert (maybe VString w1 = None) as -> by (by destruct v1, w1). } | ||
180 | destruct v1, w1; simplify_eq/=. | ||
181 | eexists (Some (VClo _ _ _)), (S m1). | ||
182 | rewrite interp_S /= Hinterp1 /=. split; [done|]. by do 2 f_equal/=. | ||
183 | - destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
184 | eapply IHn in Hinterp' as (mw' & m1 & Hinterp1 & ?); last done. | ||
185 | destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. | ||
186 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
187 | destruct (maybe3 VClo _) eqn:Hclo; simplify_res; last first. | ||
188 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
189 | by assert (maybe3 VClo w' = None) as -> by (by destruct v', w'). } | ||
190 | destruct v', w'; simplify_eq/=. | ||
191 | eapply IHn with (E2 := <[x0:=Thunk E2 e2_2]> E0) in Hinterp | ||
192 | as (w & m2 & Hinterp2 & ?); last by apply subst_env_insert_eq. | ||
193 | exists w, (S (m1 `max` m2)). rewrite interp_S /=. | ||
194 | rewrite (interp_le Hinterp1) /=; last lia. | ||
195 | rewrite (interp_le Hinterp2) /=; last lia. done. | ||
196 | Qed. | ||
197 | |||
198 | Lemma subst_as_subst_env x e1 e2 : | ||
199 | subst {[x:=e2]} e1 = subst_env (<[x:=Thunk ∅ e2]> ∅) e1. | ||
200 | Proof. rewrite subst_env_insert //= !subst_env_empty //. Qed. | ||
201 | |||
202 | Lemma interp_subst_abs n x e1 e2 mv : | ||
203 | interp n ∅ (subst {[x:=e2]} e1) = Res mv → | ||
204 | ∃ mw m, interp m (<[x:=Thunk ∅ e2]> ∅) e1 = Res mw ∧ | ||
205 | val_to_expr <$> mv = val_to_expr <$> mw. | ||
206 | Proof. | ||
207 | apply interp_proper. by rewrite subst_env_empty subst_as_subst_env. | ||
208 | Qed. | ||
209 | |||
210 | Lemma interp_subst_eval n e ds mv : | ||
211 | interp n ∅ (subst ds e) = Res mv → | ||
212 | ∃ mw m, interp m (Thunk ∅ <$> ds) e = Res mw ∧ | ||
213 | val_to_expr <$> mv = val_to_expr <$> mw. | ||
214 | Proof. | ||
215 | apply interp_proper. | ||
216 | by rewrite subst_env_empty subst_env_alt map_fmap_thunk_to_expr_Thunk. | ||
217 | Qed. | ||
218 | |||
219 | Lemma interp_step e1 e2 n mv : | ||
220 | e1 --> e2 → | ||
221 | interp n ∅ e2 = Res mv → | ||
222 | ∃ mw m, interp m ∅ e1 = Res mw ∧ val_to_expr <$> mv = val_to_expr <$> mw. | ||
223 | Proof. | ||
224 | intros Hstep. revert mv n. | ||
225 | induction Hstep; intros mv n Hinterp. | ||
226 | - apply interp_subst_abs in Hinterp as (mw & [|m] & Hinterp & Hv); | ||
227 | simplify_eq/=; [|done..]. | ||
228 | exists mw, (S (S (S m))). rewrite !interp_S /= -!interp_S. | ||
229 | eauto using interp_le with lia. | ||
230 | - exists mv, (S n). rewrite !interp_S /=. | ||
231 | rewrite lookup_empty left_id_L /=. done. | ||
232 | - apply interp_subst_eval in Hinterp as (mw & [|m] & Hinterp & Hv); | ||
233 | simplify_eq/=; [|done..]. | ||
234 | exists mw, (S (S m)). rewrite !interp_S /= -interp_S. | ||
235 | rewrite left_id_L H /=. done. | ||
236 | - destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. | ||
237 | destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
238 | apply IHHstep in Hinterp' as (mw' & m1 & Hinterp1 & ?); simplify_res. | ||
239 | destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. | ||
240 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
241 | destruct (maybe VString _) eqn:Hstring; simplify_res; last first. | ||
242 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
243 | by assert (maybe VString w' = None) as -> by (by destruct v', w'). } | ||
244 | destruct v', w'; simplify_eq/=. | ||
245 | eexists (Some (VClo _ _ _)), (S m1). rewrite !interp_S /=. | ||
246 | rewrite (interp_le Hinterp1) /=; last lia. done. | ||
247 | - destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. | ||
248 | destruct (interp n _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
249 | apply IHHstep in Hinterp' as (mw' & m1 & Hinterp1 & ?); simplify_res. | ||
250 | destruct mv' as [v'|], mw' as [w'|]; simplify_res; last first. | ||
251 | { exists None, (S m1). by rewrite interp_S /= Hinterp1. } | ||
252 | destruct (maybe3 VClo _) eqn:Hclo; simplify_res; last first. | ||
253 | { exists None, (S m1). rewrite interp_S /= Hinterp1 /=. | ||
254 | by assert (maybe3 VClo w' = None) as -> by (by destruct v', w'). } | ||
255 | destruct v', w'; simplify_eq/=. | ||
256 | eapply interp_proper in Hinterp as (mw & m2 & Hinterp2 & Hv); | ||
257 | last apply subst_env_insert_eq; try done. | ||
258 | exists mw, (S (m1 `max` m2)). rewrite !interp_S /=. | ||
259 | rewrite (interp_le Hinterp1) /=; last lia. | ||
260 | by rewrite (interp_le Hinterp2) /=; last lia. | ||
261 | - destruct n as [|n]; [done|rewrite interp_S /= in Hinterp]. | ||
262 | destruct (interp n _ e1') as [mv1|] eqn:Hinterp1; simplify_eq/=. | ||
263 | apply IHHstep in Hinterp1 as (mw1 & m & Hinterp1 & Hw1). | ||
264 | destruct mv1 as [v1|], mw1 as [w1|]; simplify_res; last first. | ||
265 | { exists None, (S m). by rewrite interp_S /= Hinterp1. } | ||
266 | destruct (maybe VString _) eqn:Hstring; simplify_res; last first. | ||
267 | { exists None, (S m). rewrite interp_S /= Hinterp1 /=. | ||
268 | by assert (maybe VString w1 = None) as -> by (by destruct v1, w1). } | ||
269 | destruct v1, w1; simplify_eq/=. | ||
270 | exists mv, (S (n `max` m)). split; [|done]. rewrite interp_S /=. | ||
271 | rewrite (interp_le Hinterp1) /=; last lia. | ||
272 | destruct (parse _); simplify_res; eauto using interp_le with lia. | ||
273 | Qed. | ||
274 | |||
275 | Lemma final_interp e : | ||
276 | final e → | ||
277 | ∃ w m, interp m ∅ e = mret w ∧ e = val_to_expr w. | ||
278 | Proof. | ||
279 | induction e as [| | |[]|]; inv 1. | ||
280 | - eexists (VString _), 1. by rewrite interp_S /=. | ||
281 | - eexists (VClo _ _ _), 2. rewrite interp_S /=. split; [done|]. | ||
282 | by rewrite subst_env_empty. | ||
283 | Qed. | ||
284 | |||
285 | Lemma red_final_interp e : | ||
286 | red step e ∨ final e ∨ ∃ m, interp m ∅ e = mfail. | ||
287 | Proof. | ||
288 | induction e. | ||
289 | - (* ENat *) right; left. constructor. | ||
290 | - (* EId *) destruct ds as [e|]. | ||
291 | + left. by repeat econstructor. | ||
292 | + do 2 right. by exists 1. | ||
293 | - (* EEval *) destruct IHe as [[??]|[Hfinal|[m Hinterp]]]. | ||
294 | + left. by repeat econstructor. | ||
295 | + apply final_interp in Hfinal as (w & m & Hinterp & ->). | ||
296 | destruct (maybe VString w) as [x|] eqn:Hw; last first. | ||
297 | { do 2 right. exists (S m). rewrite interp_S /= Hinterp /=. | ||
298 | by rewrite Hw. } | ||
299 | destruct w; simplify_eq/=. | ||
300 | destruct (parse x) as [e|] eqn:Hparse; last first. | ||
301 | { do 2 right. exists (S m). rewrite interp_S /= Hinterp /=. | ||
302 | by rewrite Hparse. } | ||
303 | left. by repeat econstructor. | ||
304 | + do 2 right. exists (S m). rewrite interp_S /= Hinterp. done. | ||
305 | - (* EAbs *) destruct IHe1 as [[??]|[Hfinal|[m Hinterp]]]. | ||
306 | + left. by repeat econstructor. | ||
307 | + apply final_interp in Hfinal as (w & m & Hinterp & ->). | ||
308 | destruct (maybe VString w) as [x|] eqn:Hw; last first. | ||
309 | { do 2 right. exists (S m). rewrite interp_S /= Hinterp /=. | ||
310 | by rewrite Hw. } | ||
311 | destruct w; naive_solver. | ||
312 | + do 2 right. exists (S m). rewrite interp_S /= Hinterp. done. | ||
313 | - (* EApp *) destruct IHe1 as [[??]|[Hfinal|[m Hinterp]]]. | ||
314 | + left. by repeat econstructor. | ||
315 | + apply final_interp in Hfinal as (w & m & Hinterp & ->). | ||
316 | destruct (maybe3 VClo w) eqn:Hw. | ||
317 | { destruct w; simplify_eq/=. left. by repeat econstructor. } | ||
318 | do 2 right. exists (S m). by rewrite interp_S /= Hinterp /= Hw. | ||
319 | + do 2 right. exists (S m). by rewrite interp_S /= Hinterp. | ||
320 | Qed. | ||
321 | |||
322 | Lemma interp_complete e1 e2 : | ||
323 | e1 -->* e2 → | ||
324 | nf step e2 → | ||
325 | ∃ mw m, interp m ∅ e1 = Res mw ∧ | ||
326 | if mw is Some w then e2 = val_to_expr w else ¬final e2. | ||
327 | Proof. | ||
328 | intros Hsteps Hnf. induction Hsteps as [e|e1 e2 e3 Hstep _ IH]. | ||
329 | { destruct (red_final_interp e) as [?|[Hfinal|[m Hinterp]]]; [done|..]. | ||
330 | - apply final_interp in Hfinal as (w & m & ? & ?). | ||
331 | by exists (Some w), m. | ||
332 | - exists None, m. split; [done|]. intros Hfinal. | ||
333 | apply final_interp in Hfinal as (w & m' & ? & _). | ||
334 | by assert (mfail = mret w) by eauto using interp_agree. } | ||
335 | destruct IH as (mw & m & Hinterp & ?); try done. | ||
336 | eapply interp_step in Hinterp as (mw' & m' & ? & ?); last done. | ||
337 | destruct mw, mw'; naive_solver. | ||
338 | Qed. | ||
339 | |||
340 | Lemma interp_complete_ret e1 e2 : | ||
341 | e1 -->* e2 → final e2 → | ||
342 | ∃ w m, interp m ∅ e1 = mret w ∧ e2 = val_to_expr w. | ||
343 | Proof. | ||
344 | intros Hsteps Hfinal. apply interp_complete in Hsteps | ||
345 | as ([w|] & m & ? & ?); naive_solver eauto using final_nf. | ||
346 | Qed. | ||
347 | Lemma interp_complete_fail e1 e2 : | ||
348 | e1 -->* e2 → nf step e2 → ¬final e2 → | ||
349 | ∃ m, interp m ∅ e1 = mfail. | ||
350 | Proof. | ||
351 | intros Hsteps Hnf Hforce. | ||
352 | apply interp_complete in Hsteps as ([w|] & m & ? & ?); simplify_eq/=; try by eauto. | ||
353 | destruct Hforce. apply final_val_to_expr. | ||
354 | Qed. | ||
355 | |||
356 | Lemma interp_sound_open E e n mv : | ||
357 | interp n E e = Res mv → | ||
358 | ∃ e', subst_env E e -->* e' ∧ | ||
359 | if mv is Some v then e' = val_to_expr v else stuck e'. | ||
360 | Proof. | ||
361 | revert E e mv. | ||
362 | induction n as [|n IH]; intros E e mv Hinterp; first done. | ||
363 | rewrite subst_env_eq. rewrite interp_S in Hinterp. | ||
364 | destruct e; simplify_res. | ||
365 | - (* EString *) by eexists. | ||
366 | - (* EId *) | ||
367 | assert (thunk_to_expr <$> (E !! x) ∪ (Thunk ∅ <$> ds) | ||
368 | = (thunk_to_expr <$> E !! x) ∪ ds). | ||
369 | { destruct (_ !! _), ds; f_equal/=. by rewrite subst_env_empty. } | ||
370 | destruct (_ ∪ (_ <$> _)) as [[E1 e1]|], (_ ∪ _) as [e2|]; simplify_res. | ||
371 | * apply IH in Hinterp as (e'' & Hsteps & He''). | ||
372 | exists e''; split; [|done]. | ||
373 | eapply rtc_l; [|done]. by econstructor. | ||
374 | * eexists; split; [done|]. split; [|inv 1]. | ||
375 | intros [? Hstep]. inv_step; simplify_eq/=; congruence. | ||
376 | - (* EEval *) | ||
377 | destruct (interp _ _ _) as [mv1|] eqn:Hinterp1; simplify_res. | ||
378 | apply IH in Hinterp1 as (e1' & Hsteps1 & He1'). | ||
379 | destruct mv1 as [v1|]; simplify_res; last first. | ||
380 | { eexists; split; [by eapply SEval_rtc|]. split; [|inv 1]. | ||
381 | intros [??]. destruct He1' as [Hnf []]. | ||
382 | inv_step; simpl; eauto. destruct Hnf; eauto. } | ||
383 | destruct (maybe VString _) as [x|] eqn:Hv1; simplify_res; last first. | ||
384 | { eexists; split; [by eapply SEval_rtc|]. split; [|inv 1]. | ||
385 | intros [??]. destruct v1; inv_step. } | ||
386 | destruct v1; simplify_eq/=. | ||
387 | destruct (parse x) as [ex|] eqn:Hparse; simplify_res; last first. | ||
388 | { eexists; split; [by eapply SEval_rtc|]. | ||
389 | split; [|inv 1]. intros [??]. inv_step. } | ||
390 | apply IH in Hinterp as (e'' & Hsteps & He''). | ||
391 | exists e''; split; [|done]. etrans; [by eapply SEval_rtc|]. | ||
392 | eapply rtc_l; [by econstructor|]. | ||
393 | by rewrite subst_env_alt map_fmap_union | ||
394 | map_fmap_thunk_to_expr_Thunk in Hsteps. | ||
395 | - (* EAbs *) | ||
396 | destruct (interp _ _ _) as [mv1|] eqn:Hinterp1; simplify_res. | ||
397 | apply IH in Hinterp1 as (e1' & Hsteps1 & He1'). | ||
398 | destruct mv1 as [v1|]; simplify_res; last first. | ||
399 | { eexists; split; [by eapply SAbsL_rtc|]. split. | ||
400 | + intros [??]. destruct He1' as [Hnf []]. | ||
401 | inv_step; simpl; eauto. destruct Hnf; eauto. | ||
402 | + intros ?. destruct He1' as [_ []]. by destruct e1'. } | ||
403 | eexists; split; [by eapply SAbsL_rtc|]. | ||
404 | destruct (maybe VString _) as [x|] eqn:Hv1; simplify_res; last first. | ||
405 | { split; [|destruct v1; inv 1]. intros [??]. destruct v1; inv_step. } | ||
406 | by destruct v1; simplify_eq/=. | ||
407 | - (* EApp *) destruct (interp _ _ _) as [mv'|] eqn:Hinterp'; simplify_res. | ||
408 | apply IH in Hinterp' as (e' & Hsteps & He'); try done. | ||
409 | destruct mv' as [v'|]; simplify_res; last first. | ||
410 | { eexists; repeat split; [by apply SAppL_rtc| |inv 1]. | ||
411 | intros [e'' Hstep]. destruct He' as [Hnf Hfinal]. | ||
412 | inv Hstep; [by destruct Hfinal; constructor|]. destruct Hnf. eauto. } | ||
413 | destruct (maybe3 VClo v') eqn:?; simplify_res; last first. | ||
414 | { eexists; repeat split; [by apply SAppL_rtc| |inv 1]. | ||
415 | intros [e'' Hstep]. inv Hstep; destruct v'; by repeat inv_step. } | ||
416 | destruct v'; simplify_res. | ||
417 | apply IH in Hinterp as (e'' & Hsteps' & He''). | ||
418 | eexists; split; [|done]. etrans; [by apply SAppL_rtc|]. | ||
419 | eapply rtc_l; first by constructor. | ||
420 | rewrite subst_env_insert // in Hsteps'. | ||
421 | Qed. | ||
422 | |||
423 | Lemma interp_sound n e mv : | ||
424 | interp n ∅ e = Res mv → | ||
425 | ∃ e', e -->* e' ∧ if mv is Some v then e' = val_to_expr v else stuck e'. | ||
426 | Proof. | ||
427 | intros Hsteps%interp_sound_open; try done. | ||
428 | by rewrite subst_env_empty in Hsteps. | ||
429 | Qed. | ||
430 | |||
431 | (** Final theorems *) | ||
432 | Theorem interp_sound_complete_ret e v : | ||
433 | (∃ w n, interp n ∅ e = mret w ∧ val_to_expr v = val_to_expr w) | ||
434 | ↔ e -->* val_to_expr v. | ||
435 | Proof. | ||
436 | split. | ||
437 | - by intros (n & w & (e' & ? & ->)%interp_sound & ->). | ||
438 | - intros Hsteps. apply interp_complete in Hsteps as ([] & ? & ? & ?); | ||
439 | unfold nf, red; | ||
440 | naive_solver eauto using final_val_to_expr, step_not_val_to_expr. | ||
441 | Qed. | ||
442 | |||
443 | Theorem interp_sound_complete_ret_string e s : | ||
444 | (∃ n, interp n ∅ e = mret (VString s)) ↔ e -->* EString s. | ||
445 | Proof. | ||
446 | split. | ||
447 | - by intros [n (e' & ? & ->)%interp_sound]. | ||
448 | - intros Hsteps. apply interp_complete_ret in Hsteps as ([] & ? & ? & ?); | ||
449 | simplify_eq/=; eauto. | ||
450 | Qed. | ||
451 | |||
452 | Theorem interp_sound_complete_fail e : | ||
453 | (∃ n, interp n ∅ e = mfail) ↔ ∃ e', e -->* e' ∧ stuck e'. | ||
454 | Proof. | ||
455 | split. | ||
456 | - by intros [n ?%interp_sound]. | ||
457 | - intros (e' & Hsteps & Hnf & Hforced). by eapply interp_complete_fail. | ||
458 | Qed. | ||
459 | |||
460 | Theorem interp_sound_complete_no_fuel e : | ||
461 | (∀ n, interp n ∅ e = NoFuel) ↔ all_loop step e. | ||
462 | Proof. | ||
463 | rewrite all_loop_alt. split. | ||
464 | - intros Hnofuel e' Hsteps. | ||
465 | destruct (red_final_interp e') as [|[|He']]; [done|..]. | ||
466 | + apply interp_complete_ret in Hsteps as (w & m & Hinterp & _); last done. | ||
467 | by rewrite Hnofuel in Hinterp. | ||
468 | + apply interp_sound_complete_fail in He' as (e'' & ? & [Hnf _]). | ||
469 | destruct (interp_complete e e'') as (mv & n & Hinterp & _); [by etrans|done|]. | ||
470 | by rewrite Hnofuel in Hinterp. | ||
471 | - intros Hred n. destruct (interp n ∅ e) as [mv|] eqn:Hinterp; [|done]. | ||
472 | apply interp_sound in Hinterp as (e' & Hsteps%Hred & Hstuck). | ||
473 | destruct mv as [v|]; simplify_eq/=. | ||
474 | + apply final_nf in Hsteps as []. apply final_val_to_expr. | ||
475 | + by destruct Hstuck as [[] ?]. | ||
476 | Qed. | ||
477 | |||
478 | End evallang. | ||