1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
const std = @import("std");
const testing = std.testing;
pub const Encoder = struct {
const Self = @This();
buffer: []const u8,
index: ?usize,
bit_off: u3,
/// Init the encoder.
pub fn init(buffer: []const u8) Encoder {
return .{
.buffer = buffer,
.index = 0,
.bit_off = 0,
};
}
/// Calculate the Base32-encoded size of an array of bytes.
pub fn calcSize(source_len: usize) usize {
const source_len_bits = source_len * 8;
return source_len_bits / 5 + (if (source_len_bits % 5 > 0) @as(usize, 1) else 0);
}
/// Encode some data as Base32.
/// Note that `dest.len` must at least be as big as `Encoder.calcSize(source.len)`.
pub fn encode(dest: []u8, source: []const u8) []const u8 {
const out_len = calcSize(source.len);
std.debug.assert(dest.len >= out_len);
var e = init(source);
for (dest[0..out_len]) |*b| b.* = e.next() orelse unreachable;
return dest[0..out_len];
}
/// Calculate the amount of bits can be read from `self.buffer[self.index]`,
/// with a maximum of 5 and an offset of `self.bit_off`.
fn frontBitsLen(self: *const Self) u3 {
// bit_off frontBitsLen
// 0 5
// 1 5
// 2 5
// 3 5
// 4 4
// 5 3
// 6 2
// 7 1
return if (self.bit_off <= 3) 5 else 7 - self.bit_off + 1;
}
/// Get the bits of `self.buffer[self.index]`, read with an offset of `self.bit_off`,
/// aligned to the left of the 5-bit unsigned integer.
/// Returns null if `self.index` is null.
/// An illustration of its behaviour, with `self.buffer[self.index]` being 0b10010111:
/// | `self.bit_off` | `frontBits` |
/// |----------------|-------------|
/// | 0 | 0b10010 |
/// | 1 | 0b00101 |
/// | 2 | 0b01011 |
/// | 3 | 0b10111 |
/// | 4 | 0b01110 |
/// | 5 | 0b11100 |
/// | 6 | 0b11000 |
/// | 7 | 0b10000 |
fn frontBits(self: *const Self) ?u5 {
const index = self.index orelse return null;
const bits = self.buffer[index];
if (self.bit_off >= 4) return @truncate(u5, bits << (self.bit_off - 3));
return @truncate(u5, bits >> (3 - self.bit_off));
}
/// Get the bits of `self.buffer[self.index]` with the maximum amount specified by the `bits` parameter,
/// aligned to the right of the 5-bit unsigned integer.
/// Because a 5-bit integer is returned, not more than 5 bits can be read. `bits` must not be greater than 5.
/// An illustration of its behaviour, with `self.buffer[self.index]` being 0b11101001:
/// | `bits` | `backBits` |
/// |--------|------------|
/// | 0 | 0b00000 |
/// | 1 | 0b00001 |
/// | 2 | 0b00011 |
/// | 3 | 0b00111 |
/// | 4 | 0b01110 |
/// | 5 | 0b11101 |
fn backBits(self: *const Self, bits: u3) u5 {
std.debug.assert(bits <= 5);
if (bits == 0 or self.index == null) return 0;
return @truncate(u5, self.buffer[self.index.?] >> (7 - bits + 1));
}
/// Get the next 5-bit integer, read from `self.buffer`.
fn nextU5(self: *Self) ?u5 {
// `self.buffer` is read 5 bits at a time by `nextU5`.
// Because of the elements of `self.buffer` being 8 bits each, we need to
// read from 2 bytes from `self.buffer` to return a whole u5.
// `front_bits` are the bits that come first, read from `self.buffer[self.index]`.
// `back_bits` are the bits that come last, read from `self.buffer[self.index + 1]`.
// `back_bits` is only used when we can't read 5 bits from `self.buffer[self.index]`.
const front_bits = self.frontBits() orelse return null;
const n_front_bits = self.frontBitsLen();
var back_bits: u5 = 0;
if (self.bit_off >= 3) {
// Next time we'll need to read from the next byte in `self.buffer`.
// We may need to grab the back bits from that next byte for this call too (if it exist).
self.bit_off -= 3; // same as self.bit_off + 5 - 8
const new_index = self.index.? + 1;
if (self.buffer.len > new_index) {
self.index = new_index;
back_bits = self.backBits(5 - n_front_bits);
} else {
self.index = null;
}
} else {
// We need to read from the current byte in the next call to `nextU5` too.
self.bit_off += 5;
}
return front_bits | back_bits;
}
/// Get the corresponding ASCII character for 5 bits of the input.
fn char(unencoded: u5) u8 {
return unencoded + (if (unencoded < 26) @as(u8, 'A') else '2' - 26);
}
/// Get the next byte of the encoded buffer.
pub fn next(self: *Self) ?u8 {
const unencoded = self.nextU5() orelse return null;
return char(unencoded);
}
};
pub const DecodeError = error{CorruptInput};
pub const Decoder = struct {
const Self = @This();
buffer: []const u8,
index: ?usize,
buf: u8,
buf_len: u4,
/// Init the decoder.
pub fn init(buffer: []const u8) Self {
return .{
.buffer = buffer,
.index = 0,
.buf_len = 0,
.buf = 0,
};
}
/// Calculate the size of a Base32-encoded array of bytes.
pub fn calcSize(source_len: usize) usize {
return safeMulDiv(source_len, 5, 8);
}
/// Decode a slice of Base32-encoded data.
/// Note that `dest.len` must at least be as big as `Decoder.calcSize(source.len)`.
pub fn decode(dest: []u8, source: []const u8) DecodeError![]const u8 {
const out_len = calcSize(source.len);
std.debug.assert(dest.len >= out_len);
var d = init(source);
for (dest[0..out_len]) |*b| b.* = (try d.next()) orelse unreachable;
return dest[0..out_len];
}
/// Get a character from the buffer.
fn decodeChar(c: u8) DecodeError!u5 {
if (c >= 'A' and c <= 'Z') {
return @truncate(u5, c - @as(u8, 'A'));
} else if (c >= '2' and c <= '9') {
// '2' -> 26
return @truncate(u5, c - @as(u8, '2') + 26);
} else {
return error.CorruptInput;
}
}
/// Get the next 5-bit decoded character, read from `self.buffer`.
fn nextU5(self: *Self) DecodeError!?u5 {
const index = self.index orelse return null;
self.index = if (index + 1 < self.buffer.len) index + 1 else null;
return try decodeChar(self.buffer[index]);
}
/// Get the next byte of the decoded buffer.
pub fn next(self: *Self) DecodeError!?u8 {
while (true) {
// Read a character and decode it.
const c = (try self.nextU5()) orelse break;
// Check how many bits we can write to the buffer.
const buf_remaining_len = 8 - self.buf_len;
// Calculate how many bytes we will write to the buffer (the decoded character represents 5 bits).
const buf_write_len = if (buf_remaining_len > 5) 5 else buf_remaining_len;
// Calculate how many bits of the decoded remain when we've written part of it to the buffer.
const c_remaining_len = 5 - buf_write_len;
// Write (the first) part of the decoded character to the buffer.
self.buf |= (@as(u8, c) << 3) >> @truncate(u3, self.buf_len);
self.buf_len += buf_write_len;
if (self.buf_len == 8) {
// The buffer is full, we can return a byte.
const ret = self.buf;
self.buf_len = c_remaining_len;
self.buf = 0;
if (buf_write_len != 5) {
// We didn't write the entire decoded character to the buffer.
// Write the remaining part to the beginning of the buffer.
self.buf = @as(u8, c) << @truncate(u3, buf_write_len + 3);
}
return ret;
}
}
// We aren't able to read any characters anymore.
// If the buffer doesn't contain any (actual) data we can stop decoding.
// Otherwise, we can return what remains in the buffer, and stop decoding
// after having done that.
if (self.buf == 0 and self.buf_len < 5) return null;
const ret = self.buf;
self.buf_len = 0;
self.buf = 0;
return ret;
}
};
// Taken from std.time.
// Calculate (a * b) / c without risk of overflowing too early because of the
// multiplication.
fn safeMulDiv(a: u64, b: u64, c: u64) u64 {
const q = a / c;
const r = a % c;
// (a * b) / c == (a / c) * b + ((a % c) * b) / c
return (q * b) + (r * b) / c;
}
test {
const encoded = "ORUGS4ZANFZSAYJAORSXG5A";
const decoded = "this is a test";
var decode_buf: [Decoder.calcSize(encoded.len)]u8 = undefined;
const decode_res = try Decoder.decode(&decode_buf, encoded);
try testing.expectEqualStrings(decoded, decode_res);
var encode_buf: [Encoder.calcSize(decoded.len)]u8 = undefined;
const encode_res = Encoder.encode(&encode_buf, decoded);
try testing.expectEqualStrings(encoded, encode_res);
}
test {
const encoded = "SNAH7EH5X4P5R2M2RGF3LVAL6NRFIXLN2E67O6FNRUQ4JCQBPL64GEBPLY";
const decoded = &[_]u8{ 0x93, 0x40, 0x7f, 0x90, 0xfd, 0xbf, 0x1f, 0xd8, 0xe9, 0x9a, 0x89, 0x8b, 0xb5, 0xd4, 0x0b, 0xf3, 0x62, 0x54, 0x5d, 0x6d, 0xd1, 0x3d, 0xf7, 0x78, 0xad, 0x8d, 0x21, 0xc4, 0x8a, 0x01, 0x7a, 0xfd, 0xc3, 0x10, 0x2f, 0x5e };
var decode_buf: [Decoder.calcSize(encoded.len)]u8 = undefined;
const decode_res = try Decoder.decode(&decode_buf, encoded);
try testing.expectEqualSlices(u8, decoded, decode_res);
var encode_buf: [Encoder.calcSize(decoded.len)]u8 = undefined;
const encode_res = Encoder.encode(&encode_buf, decoded);
try testing.expectEqualSlices(u8, encoded, encode_res);
}
|